首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 1H NMR study that explored the ability of α-cyclodextrin (α-CD) to preferentially bind (R)-α-lipoic acid is presented. The interaction between α-CD and (R)-α-lipoic acid was found to be stronger than that between α-CD and (S)-α-lipoic acid. Structures for the (R)-α-lipoic acid/α-CD and (S)-α-lipoic acid/α-CD inclusion complexes were constructed using restraints derived from ROESY spectra and MM2 molecular mechanics calculations. The models built for both complexes have the 1,2-dithiolane ring and the carboxyl moiety of α-lipoic acid oriented toward the secondary and primary hydroxy sides of α-CD, respectively.  相似文献   

2.
The anomeric effect plays a central role in carbohydrate chemistry, but its origin is controversial, and both the hyperconjugation model and the electrostatic model have been proposed to explain this phenomenon. Recently, Cocinero et al. designed a peptide sensor, which can bind to a sugar molecule methyl D-galactose, and claimed that the anomeric effect can be sensed by the spectral changes from the β- to the α-complex, which are ultimately attributed to the lone pair electron density change on the endocyclic oxygen atom [Nature 2011, 469, 76; J. Am. Chem. Soc. 2011, 133, 4548]. Here, we provide strong computational evidence showing that the observed spectral changes simply come from the conformational differences between the α- and β-anomers, as the replacement of the endocyclic oxygen atom with a methylene group, which disables both the endo- and the exo-anomeric effects in methyl D-galactose, leads to similar spectral shifts. In other words, the "sensor" cannot probe the anomeric effect as claimed. We further conducted detailed energetic and structural analyses to support our arguments.  相似文献   

3.
Four new NiII–NiII–NiII homotrinuclear complexes namely [Ni(-BD)2{NiL2}](ClO4)2 [L = 1,10-phenanthroline (phen), 5-nitro-1,10-phenanthroline (5-NO2-phen), 2,2-bipyridyl (bpy) or 4,4-dimethyl-2,2bipyridyl (Me2bpy) and (-BD)– = -benzyldioximato ion] have been prepared and characterized. Based on elemental analyses, i.r. spectra, conductivity measurements, extended -benzyldioximato-bridged systems consisting of three nickel(II) ions in which the central nickel(II) ion has a square-planar environment and the end capped two nickel(II) ions have a distorted octahedral environment are proposed for these structures. The temperature dependence of the magnetic susceptibility for complexes (1) (phen), (2) (5-NO2-phen), (3) (bpy) and (4) (Me2bpy) were measured over the 77–300 K range and the observed data were successfully simulated by an equation based on the spin Hamiltonian operator (H^ = –2JS^1S^2), giving the exchange integral J = –13.31 cm–1 for (1), J = –7.37 cm–1 for (2), J = –8.96 cm–1 for (3) and J = –7.33 cm–1 for (4) These results indicate a weak antiferromagnetic spin exchange interaction between the two terminal nickel(II) io  相似文献   

4.
DFT calculations have been performed on the CO adducts of the bivalent lanthanides, Cp(2)M(CO)(x), where M is Eu or Yb and x is 1 or 2, the alkaline earth metallocene Cp(2)Ca(CO), and the methylisocyanide adducts of Yb. The calculated nu(CO) values are in agreement with experiment for Cp(2)M(CO) when M is Ca or Eu, but in striking disagreement when the CO is bound to the metal by way of the carbon atom in CO in the case of Yb. The calculated nu(CO) values for M = Yb are brought into agreement with experiment when the CO is allowed to bond to Cp(2)Yb by way of the oxygen atom.  相似文献   

5.
Two Re(IV)–Cu(II) heterometallic complexes {(CuLα)[ReCl4(ox)]}n (where Lα = N-meso-5,12-Me2-7,14-Et2-[14]-4,11-dieneN4), 1, and (CuLβ)[ReCl4(ox)] (Lβ = N-rac-5,12-Me2-7,14-Et2-[14]-4,11-dieneN4N-rac-5,12-Me2-7,14-Et2-[14]-4,11-dieneN4), 2, were synthesized. The [CuL2+] macrocyclic cation is coordinated from above and below by [ReCl4(ox)]2− units through the chloro-ligands and creates a chloro-bridged heterometallic ReIV–CuII one-dimensional zig-zag chain. Compound 2 can be viewed as a heterobimetallic dinuclear unit, in which the Re(IV)-Cu(II) centers are linked by an oxalato bridge. The magnetic behavior of 1 and 2 has been investigated over the temperature range 1.8–300 K. Compound 1 behaves like a ferrimagnetic {Re(IV)–Cu(II)} bimetallic, one-dimensional chain with intrachain antiferromagnetic coupling. Compound 2 shows a weak antiferromagnetic interaction within the [Re(IV)–Cu(II)] unit along with a strong single-ion anisotropy, D(Re) = −63 cm−1.  相似文献   

6.
Two Co(II) and Mn(II) coordination polymers, which have been synthesized under hydrothermal conditions, are isomorphous with magnetic Δ-chains containing trinuclear triangular [M(3)(μ(3)-OH)] clusters. The Δ-chains are bridged by isonicotinic spacers to generate a two-dimensional scalariform layer structure. Magnetic investigations indicate that Co(II) compound exhibits not only spin canting but also metamagnetic behaviors, while only spin-canted antiferromagnetic behaviors was observed in Mn(II) compound.  相似文献   

7.
The chloroiron corrolates of 2,3,7,8,12,13,17,18-octamethyl- and 7,13-dimethyl-2,3,8,12,17,18-hexaethylcorrole ([(Me8C)FeCl] and [(7,13-Me2Et6C)FeCl], respectively) and their bisimidazole complexes have been investigated by NMR spectroscopy as a function of temperature, and by EPR spectroscopy at 4.2 K. Magnetic susceptibilities were measured by the modified Evans method. It is found that the electron configuration of the chloroiron corrolates is that of a S = 3/2 Fe(III) center coupled to a corrolate pi radical, where one electron has been removed from the pi system of the corrolate. This pi radical is antiferromagnetically coupled to the unpaired electrons of the iron to yield an overall S = 1 complex, as evidenced by the very large positive shifts of the meso-H resonances (183 and 172 ppm). That this antiferromagnetic coupling is very strong is supported by the near-Curie behavior of the 1H chemical shifts. For the chloroiron corrolates in the presence of imidazole, imidazole-d4, and N-methylimidazole at temperatures of -50 degrees C and below, the mono- and bisligand complexes are formed. The NMR spectra can be assigned on the basis of chemical exchange between the chloroiron(III) parent complex and the bisligand complex at -30 degrees C, and between the bisligand complex and the monoligand complex at -50 degrees C. The bisimidazole complexes show pyrrole CH2 and CH3 resonances characteristic of low-spin Fe(III) centers (S = 1/2), but with strongly upfield-shifted meso-H resonances (delta values of -95 and -82.5 ppm for the octamethyl complex and -188 and -161 ppm for the dimethylhexaethyl complex at 203 K) characteristic of the presence of a macrocycle-centered unpaired electron. The magnetic moments of these bisligand complexes are somewhat lower than expected for overall S = 1 systems, and decrease as the temperature is lowered. The lower apparent magnetic moments (2.0-1.8 mu B between -50 and -90 degrees C) are believed to be caused by a combination of weak or no magnetic coupling between the metal and macrocycle electrons and decreasing solubility of the complex as the temperature is lowered. The non-Curie behavior of the 1H chemical shifts observed in the low-temperature (-50 to -90 degrees C) NMR spectra likely arises from a combination of the effects of weak antiferromagnetic coupling of metal and macrocycle spins, a low-lying electronic excited state, and ligand binding/loss equilibria at the highest temperatures studied (-50 degrees C).  相似文献   

8.
Four binuclear Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) complexes bridged by oxamidate (oxd) group have been synthesized, namely Co2(byp)2(oxd)(ClO4)2 (1), Co2(Me2bpy)2(oxd)(ClO4)2.H2O (2), Ni2(bpy)2(oxd)(ClO4)2.2H2O (3) and Cu2(Me2bpy)2(oxd)(NO3)2 (4). (bpy=2,2'-bipyridyl, Me2-bpy=4,4'-dimethylbipyridyl, oxd=oxamidate) The complexes are characterized by IR, UV spectra, EPR and variable-temperature magnetic susceptibility (4-300 K). The susceptibility data for. complexes 1 and 3 were least-squares fit to the susceptibility equation derived from the spin Hamiltonian H=-2J . S1 . S2. The exchange integral, J, was found to be equal to -3.62 cm-1 in 1 and -1.82 cm-1 in 3. This indicates a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

9.
One-electron oxidation of [(Me(n)tpa)Ir(I)(ethene)]+ complexes (Me(3)tpa = N,N,N-tri(6-methyl-2-pyridylmethyl)amine; Me(2)tpa = N-(2-pyridylmethyl)-N,N,-di[(6-methyl-2-pyridyl)methyl]-amine) results in relatively stable, five-coordinate Ir(II)-olefin species [(Me(n)tpa)Ir(II)(ethene)](2+) (1(2+): n = 3; 2(2+): n = 2). These contain a "vacant site" at iridium and a "non-innocent" ethene fragment, allowing radical type addition reactions at both the metal and the ethene ligand. The balance between metal- and ligand-centered radical behavior is influenced by the donor capacity of the solvent. In weakly coordinating solvents, 1(2+) and 2(2+) behave as moderately reactive metallo-radicals. Radical coupling of 1(2+) with NO in acetone occurs at the metal, resulting in dissociation of ethene and formation of the stable nitrosyl complex [(Me(3)tpa)Ir(NO)](2+) (6(2+)). In the coordinating solvent MeCN, 1(2+) generates more reactive radicals; [(Me(3)tpa)Ir(MeCN)(ethene)](2+) (9(2+)) by MeCN coordination, and [(Me(3)tpa)Ir(II)(MeCN)](2+) (10(2+)) by substitution of MeCN for ethene. Complex 10(2+) is a metallo-radical, like 1(2+) but more reactive. DFT calculations indicate that 9(2+) is intermediate between the slipped-olefin Ir(II)(CH(2)=CH(2)) and ethyl radical Ir(III)-CH(2)-CH(2). resonance structures, of which the latter prevails. The ethyl radical character of 9(2+) allows radical type addition reactions at the ethene ligand. Complex 2(2+) behaves similarly in MeCN. In the absence of further reagents, 1(2+) and 2(2+) convert to the ethylene bridged species [(Me(n)tpa)(MeCN)Ir(III)(mu(2)-C(2)H(4))Ir(III)(MeCN)(Me(3)tpa)](4+) (n = 3: 3(4+); n = 2: 4(4+)) in MeCN. In the presence of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxo), formation of 3(4+) from 1(2+) in MeCN is completely suppressed and only [(Me(3)tpa)Ir(III)(TEMPO(-))(MeCN)](2+) (7(2+)) is formed. This is thought to proceed via radical coupling of TEMPO at the metal center of 10(2+). In the presence of water, hydrolysis of the coordinated acetonitrile fragment of 7(2+) results in the acetamido complex [(Me(3)tpa)Ir(III)(NHC(O)CH(3)))(TEMPOH)](2+) (8(2+)).  相似文献   

10.
The thermodynamic properties and molecular dynamics of (NH4)2Zn(SO4)2·6H2O were investigated using thermogravimetric analysis, differential scanning calorimetry, and nuclear magnetic resonance observations. The first mass loss occurs near 350 K (= T d) and is interpreted as the onset of partial thermal decomposition. The temperature dependences of the spin–lattice relaxation time in laboratory frame T 1 and in rotating frame T for H nuclei were studied near T d and T C1. The increase in T 1 near T d seems to be related to the ammonium protons, and the abrupt decrease in T near T d can be explained due to the loss of H2O.  相似文献   

11.
Using two trans-dicyanidechromium(III) precursors K[Cr(bpdmb)(CN)2] (bpdmb2? = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate), K[Cr(bpClb)-(CN)2] (bpClb2? = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate) and one Cu(II) complex of a 14-membered macrocycle as ancillary organic ligand as assembling segments, two one-dimensional cyanide-bridged CrIII–CuII complexes {{[Cu(cyclam)][Cr(bpdmb)(CN)2]}ClO4} n ·nCH3OH·nH2O (1) and {{[Cu(cyclam)][Cr(bpClb)(CN)2]}ClO4} n ·nCH3OH (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane) have been synthesized and characterized by elemental analysis, IR spectroscopy and X-ray structure determination. Single X-ray diffraction analysis shows that their similar one-dimensional cationic single-chain structures consist of alternating units of [Cu(cyclam)]2+ and [Cr(bpdmb)(CN)2]?/[Cr(bpClb)(CN)2]? with free ClO4 ? as balancing anions. Investigations of the temperature dependences of magnetic susceptibility and the field-dependent magnetization reveal that both complexes have overall ferromagnetic coupling between the neighboring Cr(III) and Cu(II) centers through the bridging cyanide groups.  相似文献   

12.
Six new dinuclear Mn(II) compounds with carboxylate bridges have been synthesized and characterized by X-ray diffraction: [{Mn(phen)(2)}(2)(μ-RC(6)H(4)COO)(2)](ClO(4))(2) with R = 2-Cl (1), 2-CH(3) (2), 3-Cl (3), 3-CH(3) (4), 4-Cl (5) and 4-CH(3) (6). Compounds 1 and 2 show two μ(1,3)-carboxylate bridges in a syn-anti mode while compounds 3-6 present a very uncommon coordination mode of the carboxylate ligand: the μ(1,1)-bridge. The magnetic properties of these compounds are very sensitive to the bridging mode of the carboxylate ligands. While compounds 1 and 2 (μ(1,3)-bridge) display antiferromagnetic interactions, with J values of -1.41 and -1.66 cm(-1), respectively, compounds 3-6 (μ(1,1)-bridge) show ferromagnetic interactions, with J values of 1.01, 0.98, 1.04 and 1.06 cm(-1), respectively. It is worth noting that compounds 3-6 are the first of their class to be magnetically characterized. The EPR spectra at 4 K for compounds with antiferromagnetic coupling (1 and 2) are more complex than those for compounds with a ferromagnetic interaction (3-6). Quite good simulations can be obtained with the ZFS parameters of the Mn(II) ion D(Mn) ~ 0.095 cm(-1) and E(Mn) ~ 0.025 cm(-1) for compounds 1 and 2 and D(Mn) ~ 0.060 cm(-1) and E(Mn) ~ 0.004 cm(-1) for compounds 3-6.  相似文献   

13.
Dimetallic Schiff base-porphyrazine (pz) compounds, denoted 1[M(1); M(2); R], have been prepared, where metal ion M(1) is incorporated into the pz core, and metal ion M(2) is bound to a bis(5-tert-butylsalicylidenimine) chelate built onto two amino nitrogens attached to the pz periphery; R is a solubilizing group (either propyl (Pr) or 3,4,5-trimethoxyphenyl (TMP)) attached to the remaining carbons of the pz periphery. The synthesis of 1[Cu; Cu; R], 1[Cu; VO; R], 1[ClMn; Cu; Pr], and 1[ClMn; VO; Pr] is discussed, the crystal structures of 1[Cu; Cu; TMP] and 1[ClMn; VO; Pr] are presented, and the magnetic properties of these compounds are compared. The pattern of ligand-mediated exchange coupling in these complexes is startling: for the Cu-M(2) complexes 1[Cu; VO; R] and 1[Cu; Cu; R], 2 x 10(2) < or = |J(Cu-VO)/J(Cu-Cu)|; for the ClMn-M(2) complexes 1[ClMn; Cu; Pr] and 1[ClMn; VO; Pr], J(ClMn-VO)/J(ClMn-Cu) approximately 1/3, an inverse ratio from that of the Cu-M(2) complexes, but with lesser discrimination. This coupling pattern is explained in terms of a novel orientation relative to the M(1)-M(2) direction: the "square-planar" Schiff base ligand set of M(2) is rotated in-plane by 45 degrees relative to the effectively coplanar pz ligand set of M(1).  相似文献   

14.
15.
A new cyanide-bridged heterobimetallic Fe(III)–Mn(II) complex {[MnL][FebpdBrb]} [FebpdBrb]n· 2nH2O has been synthesized by using pyridinecarboxamide trans-dicyanideiron as the building block. The X-ray diffraction analysis has revealed the one-dimensional infinite structure of the complex consisting of the alternating [Mn(L)]2+ and [Fe(bpdBrb)(CN)2] units forming a cyanide-bridged cationic polymeric chain, with [Fe(bpdBrb)(CN)2] as the free anions. The antiferromagnetic coupling between the neighboring Fe(III) and Mn(II) ions through the bridging cyanide group has been revealed. The magnetic coupling constant has been determined as of J =–3.17 cm–1.  相似文献   

16.
《Polyhedron》1999,18(8-9):1311-1316
The bis(2-pyridyl-ketone) compound is expected to have great potential as a multidentate ligand with transition metals. However, similar ketone-containing compounds, bis(2-pyridyl-ketone) could undergo metal-promoted hydration. With the aim of determining its behaviour, bis(2-pyridyl-ketone) was reacted with Cu(II) and Mn(II). X-ray characterisation of the products reveals the formation of complexes containing picolinate anions as products of the degradation of bis(2-pyridyl-ketone). ESR spectroscopy for the compound with Mn(II) (1) indicates an important zero-field splitting term originating from the strong distortion of the resulting Mn(II) octahedra. The ESR spectra for the compound with Cu(II) (2) are consistent with the elongated Cu(II)-octahedra. These octahedra form a monodimensional arrangement which shows the occurrence of antiferromagnetic exchange couplings.  相似文献   

17.
By employing trans-dicyano or pentacyanometalate as building block and using a bicompartimental Schiffbase based manganese(III) compound as assemble segment, two new cyanide-bridged heterometallic Fe(III)–Mn(III) complexes {[Mn(L)(H2O)][Febpb(CN)2]}·2CH3OH (1) and {[Mn(L)(H2O)]2··[Fe(CN)5NO]} (2) (bpb2– = 1,2-bis(pyridine-2-carboxamido)benzenate, L = N,N'-ethylene-bis(3-ethoxysalicylideneiminate) have been synthesized and characterized by elemental analysis, IR spectroscopy and X-ray structure determination. Single X-ray diffraction analysis reveals binuclear FeMn and trinuclear FeMn2 structure, respectively, in which the cyanide precursor acts as mono- or bidentate ligand to connect the Mn(III) Schiff-base unit(s). Furthermore, these two complexes are self-complementary through coordinated aqua ligands from one complex and the free O4 compartments from the neighboring complex, giving dimeric and 1D single chain supramolecular structure. Investigation of the magnetic susceptibility of 1 reveals weak antiferromagnetic coupling between the adjacent Mn(III) ions. Based on the binuclear FeMn model, best fit of the magnetic susceptibilities of 1 leads to the magnetic coupling constants J =–1.37 cm–1 and zJ′ =–0.72 cm–1 (1).  相似文献   

18.
It is well established that graphene oxide can be prepared by the oxidation of graphite using permanganate or chlorate in an acidic environment. Recently, however, the synthesis of graphene oxide using potassium ferrate(VI) ions has been reported. Herein, we critically replicate and evaluate this new ferrate(VI) oxidation method. In addition, we test the use of potassium ferrate(VI) for the synthesis of graphene oxide under various experimental routes. The synthesized materials are analyzed by a number of analytical methods in order to confirm or disprove the possibility of synthesizing graphene oxide by the ferrate(VI) oxidation route. Our results confirm the unsuitability of using ferrate(VI) for the oxidation of graphite on graphene oxide because of its high instability in an acidic environment and low oxidation power in neutral and alkaline environments.  相似文献   

19.
The Au-S interaction is probably the most intensively studied interaction of Au surfaces with nonmetals, as, for example, it plays an important role in Au ore formation(1) and controls the structure and dynamics of thiol-based self-assembled monolayers (SAMs). Various S-induced surface structures on Au(111) were recently reported for different conditions and predominantly interpreted in terms of a static Au surface. Here, we demonstrate that the Au(111) surface exhibits a very dynamic character upon interaction with adsorbed sulfur: large-scale surface restructuring and incorporation of Au atoms into a growing 2D AuS phase were observed in situ. These results provide new insight into the Au-S surface chemistry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号