首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several problems for the direct electrochemical oxidation of reduced glutathione (GSH) challenge the usage of electroanalytical techniques for its determination. In this work, the electrochemical oxidation of GSH catalyzed by gold nanoparticles electrodeposited on Nafion modified carbon paste electrode in 0.04?mol?L?1 universal buffer solution (pH?7.4) is proved successful. The effect of various experimental parameters including pH, scan rate and stability on the voltammetric response of GSH was investigated. At the optimum conditions, the concentration of GSH was determined using differential pulse voltammetry (DPV) in two concentration ranges: 0.1?×?10?7 to 1.6?×?10?5?mol?L?1 and 2.0?×?10?5 to 2.0?×?10?4?mol?L?1 with correlation coefficients 0.9988, 0.9949 and the limit of detections (LOD) are 3.9?×?10?9?mol?L?1 and 8.2?×?10?8?mol?L?1, respectively, which confirmed the sensitivity of the electrode. The high sensitivity, wide linear range, good stability and reproducibility, and the minimal surface fouling make this modified electrode useful for the determination of spiked GSH in urine samples and in tablet with excellent recovery results obtained.  相似文献   

2.
Anodic electrodeposition of lead dioxide at the bare and Nafion® covered gold electrode was studied by cyclic voltammetry and chronoamperometry. The results showed that Nafion® layer has a favourable effect on the efficiency of the deposition process which was caused by both thermodynamic and kinetic reasons. Electrodeposition process at Nafion® covered gold electrode goes via Pb(III) intermediate species which are stabilized within Nafion® membrane. The final PbO2 deposit crystallizes in tetragonal β-PbO2 form.  相似文献   

3.
In this paper, we report the fabrication of an amplified sensor to determine dopamine in the presence of morphine based on nano-MgO, multiwall carbon nanotubes, and an oxadiazole derivative. The electrochemical behavior and electrocatalyic activity of the sensor toward the oxidation of dopamine were investigated. Cyclic voltammetry was used to study the redox features of the sensor, and the results have shown that dopamine overpotential oxidation at the surface of the sensor was reduced to nearly 460 mV. The diffusion coefficient was estimated by chronoamperometry. Three segmented linear dynamic ranges over the range 0.05–5175.0 and detection limit of 0.021 μM for the quantification of dopamine were obtained using differential pulse voltammetry (DPV). The modified nanocomposite carbon paste electrode, which showed excellent sensitivity, selectivity, repeatability, and reproducibility, was satisfactorily employed to determine dopamine and morphine in actual samples.  相似文献   

4.
Caifeng Ding  Fei Zhao  Jin-Ming Lin 《Talanta》2009,78(3):1148-4751
A novel and effective electrochemical immunosensor for the rapid determination of α-fetoprotein (AFP) based on carbon paste electrode (CPE) consisting of room temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6) and graphite. The surface of the CPE was modified with gold nanoparticles for the immobilization of the α-fetoprotein antibody (anti-AFP). By sandwiching the antigen between anti-AFP on the CPE modified with gold nanoparticles and the secondary antibody, polyclonal anti-human-AFP labeled with horseradish peroxidase (HRP-labeled anti-AFP), the immunoassay was established. The concentration of AFP was determined based on differential pulse voltammetry (DPV) signal, which was generated in the reaction between O-aminophenol (OAP) and H2O2 catalyzed by HRP labeled on the sandwich immunosensor. AFP concentration could be measured in a linear range of 0.50-80.00 ng mL−1 with a detection limit of 0.25 ng mL−1. The immunosensor exhibited high sensitivity and good stability, and would be valuable for clinical assay of AFP.  相似文献   

5.
Journal of Solid State Electrochemistry - Analysis of saliva is a potential diagnostic tool in the management of human diseases. Analysis of saliva in healthy individuals is vital to comparison in...  相似文献   

6.
This article describes an electrochemical metal-ion sensor based on a cobalt phthalocyanine (CoPc) complex and determination of its sensor activity for some transition metal ions. Ag+ and Hg2+, among several transition metal ions, coordinate to the sulfur donors of CoPc and alter the electrochemical responses of CoPc in solution, indicating possible application of the complex as Ag+ and Hg2+ sensor. For practical application, CoPc was encapsulated into a polymeric cation exchange membrane, Nafion, on a glassy carbon electrode and used as an electrochemical coordination element. This composite electrode was potentiometrically optimized and potentiometrically and amperometrically characterized as transition metal-ion sensors with respect to reproducibility, repeatability, stability, selectivity, linear concentration range, and sensitivity. A µmol?dm?3 sensitivity of the CoPc-based sensor indicates its possible practical application for the determination of Ag+ and Hg+2 in waste water samples.  相似文献   

7.
The present paper describes a sensitive electrochemical detection of amlodipine (AMLO) at the poly-l-methionine–gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode (PLM–GNPs/MWCNTs/GCE) by differential pulse voltammetry (DPV) technique at physiological pH 7.12. Cyclic voltammetry results demonstrate that the proposed electrode shows excellent electrocatalytic activity toward oxidation of AMLO. Kinetic parameters of the electrochemical reaction are calculated, and analytical variables such as MWCNT volumes, drug accumulation time, electropolymerization cycles and pH values are also optimized. Under optimal conditions, the linear range covering from 5 nM to 2.5 μM along with detection limit of 1 nM is obtained. Moreover, this method is successfully used to detect AMLO in pharmaceutical samples and biological fluids of a dosage received by the volunteer.  相似文献   

8.
Zhou  Ying  Wang  Peilong  Su  Xiaoou  Zhao  Hong  He  Yujian 《Mikrochimica acta》2014,181(15):1973-1979

We are presenting an electrochemical immunosensor for the determination of the β-agonist and food additive ractopamine. A glassy carbon electrode (GCE) was modified with gold nanoparticles and a film of a composite made from poly(arginine) and multi-walled carbon nanotubes. Antibody against ractopamine was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin. The assembly of the immunosensor was followed by electrochemical impedance spectroscopy. Results demonstrated that the semicircle diameter increases, indicating that the film formed on the surface hinders electron transfer due to formation of the antibody-antigen complex on the modified electrode. Under optimal conditions, the peak current obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol•L−1 to 1 μmol•L−1 concentration range. The lower detection limit is 0.1 nmol•L−1. The sensor displays good stability and reproducibility. The method was applied to the analysis of spiked swine feed samples and gave satisfactory results.

Immunoassay for ractopamine based on glassy carbon electrode modified with gold nanoparticles and a film of a composite made from poly (arginine) and multi-walled carbon nanotubes was proposed. Under optimal conditions, the peak currents obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol•L−1 to 1 μmol•L−1 concentration range. The detection limit is 0.1 nmol•L−1.

  相似文献   

9.
We are presenting an electrochemical immunosensor for the determination of the β-agonist and food additive ractopamine. A glassy carbon electrode (GCE) was modified with gold nanoparticles and a film of a composite made from poly(arginine) and multi-walled carbon nanotubes. Antibody against ractopamine was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin. The assembly of the immunosensor was followed by electrochemical impedance spectroscopy. Results demonstrated that the semicircle diameter increases, indicating that the film formed on the surface hinders electron transfer due to formation of the antibody-antigen complex on the modified electrode. Under optimal conditions, the peak current obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol?L?1 to 1 μmol?L?1 concentration range. The lower detection limit is 0.1 nmol?L?1. The sensor displays good stability and reproducibility. The method was applied to the analysis of spiked swine feed samples and gave satisfactory results. Figure
Immunoassay for ractopamine based on glassy carbon electrode modified with gold nanoparticles and a film of a composite made from poly (arginine) and multi-walled carbon nanotubes was proposed. Under optimal conditions, the peak currents obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol?L?1 to 1 μmol?L?1 concentration range. The detection limit is 0.1 nmol?L?1.  相似文献   

10.
We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag@C modified glassy carbon (Ag@C/GC) electrode. The Ag@C core–shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag@C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag@C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 × 10−7 to 1.0 × 10−4 M with a detection limit of 4.0 × 10−8 M (S/N = 3). In addition, the proposed electrode was applied for the determination of Trp concentration in real samples and satisfactory results were obtained. The technique offers enhanced sensitivity and may trigger the possibilities of the Ag@C nanocomposite towards diverse applications in biosensor and electroanalysis.  相似文献   

11.
A carbon paste electrode based on γ-cyclodextrin–carbon nanotube composite (γ-CD–CNT–CME) was developed for the determination of propranolol hydrochloride (PRO). The electrochemical behaviour of PRO was investigated employing cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse adsorptive stripping voltammetry (DPAdSV). Surface morphology of the electrode has been studied by means of scanning electron microscopy. The results revealed that the oxidation of PRO is facilitated at γ-CD–CNT–CME. Under the optimized conditions in Britton–Robinson buffer pH 1.5, the peak currents were found to vary linearly with their concentrations in the range of 1.42 × 10?7 to 4.76 × 10?5 M. A detection limit (S/N = 3) of 4.01 × 10?8 M was obtained for PRO by means of DPAdSV. The proposed method was employed for the determination of PRO in pharmaceutical formulations, urine and blood serum samples.  相似文献   

12.
A solid bar microextraction (SBME) method containing sorbent materials 2?mg in the lumen of a porous hollow fiber membrane 2.5?cm for the extraction of carbamazepine, diclofenac and ibuprofen from river water samples is described. The desorbed analytes were analyzed using reversed-phase high performance liquid chromatography with ultraviolet detection. In order to achieve optimum performance, several extraction parameters were optimized. Of the sorbents evaluated, LiChrosorb RP-8 was the most promising. Under the optimized conditions, limits of detection from 0.7 to 0.9???g?L?1, precisions from 5.5 to 6.4% and a correlation coefficient of 0.999 were obtained for the target drugs over a concentration range of 1?C200???g?L?1. In comparison with the solid phase extraction, the SBME system offers distinct advantages due to its higher enrichment factors, lower consumption of organic solvents and time saving.
A solid bar microextraction method for the liquid chromatographic determination of trace diclofenac, ibuprofen and carbamazepine in river water  相似文献   

13.
Electrochemical synthesis of ruthenium oxide (RuOx) onto Nafion-coated glassy carbon (GC) electrode and naked GC electrode were carried out by using cyclic voltammetry. Electrochemical deposition of RuOx onto Nafion-coated electrode was monitored by in situ electrochemical quartz crystal microbalance (EQCM). Surface characterizations were performed by scanning electron microscope (SEM) and atomic force microscope (AFM). SEM and AFM images revealed that ruthenium oxide particles incorporated onto the Nafion polymer film. In addition, a GC electrode modified with ruthenium oxide–Nafion film (RuOx–Nf–GC) was shown excellent electrocatalytic activity towards dopamine (DA) and ascorbic acid (AA). The anodic peak current increases linearly over the concentration range of 50 μM–1.1 mM for DA with the correlation coefficient of 0.999, and the detection limit was found to be (S/N = 3) 5 μM. Owing to the catalytic effect of the modified film towards DA, the modified electrode resolved the overlapped voltammetric responses of AA and DA into two well-defined voltammetric peaks with peak-to-peak separation about 300 mV. Here, RuOx–Nf–GC electrode employed for determination of DA in the presence of AA. This modified electrode showed good stability and antifouling properties.  相似文献   

14.
We report on an amperometric assay for Al(III) ions that is based on the inhibition of the enzyme α-chymotrypsin. Screen-printed carbon electrodes modified with gold nanoparticles were used as solid supports for the immobilization of the enzyme. The amperometric response of the synthetic enzyme substrate substrate N-benzoyl-L-tyrosine ethyl ester is affected by Al(III) ions, and this leads to a decrease in the amperometric oxidation current. The assay has a detection limit of 3.3?μM of Al(III). The repeatability and reproducibility of the method are 6.9% (n?=?3) and 6.4% (n?=?5), respectively. Main interferents include Mo(VI), W(VI) and Fe(III) ions. The method was successfully applied to the determination of Al(III) in tap water.
Figure
An electrochemical biosensor for Al (III) was developed based on screen-printed carbon electrodes modified with gold nanoparticles and the enzyme α- chymotrypsin. The biosensor had high sensitivity, high selectivity, ease of use and construction for Al (III) analysis.  相似文献   

15.
Soil microorganisms and enzymes are the primary mediators of soil biological processes, including organic matter degradation, mineralization, and nutrient recycling. They play an important role in maintaining soil ecosystem quality and functional diversity. Moreover, enzyme activities can provide an indication of quantitative changes in soil organic matter. β-Glucosidase (β-Glu) activity has been found to be sensitive to soil management and has been proposed as a soil quality indicator because it provides an early indication of changes in organic matter status and its turnover. The aims of the present study were to test and use a simple and convenient procedure for the assay of β-Glu activity in agricultural soil. The method described here is based on the enzymatic degradation of cellobiose by β-Glu present in the soil sample and the subsequent determination of glucose produced by the enzymatic reaction using screen-printed carbon electrodes modified with multiwalled carbon nanotubes (SPCE-CNT) equipped with coimmobilized glucose oxidase and horseradish peroxidase enzymes. The potential applied to the SPCE-CNT detection was −0.15 V versus a Ag/AgCl pseudo-reference electrode. A linear calibration curve was obtained in the range 2.7–11.3 mM with a correlation coefficient. In the present study, an easy and effective SPCE-CNT-modified electrode allowed an improved amperometric response to be achieved and this is attributed to the increased surface area upon electrode modification.  相似文献   

16.
Calf thymus DNA was electrochemically oxidized at a multi-walled carbon nanotube modified electrode. The potentials for DNA oxidation at pH 7.0 were 0.71 and 0.81 V versus SCE, corresponding to the oxidation of guanine and adenine residues, respectively. The initial 6e-oxidation of adenine, observed in the first scan, resulted a quasi-reversible 2e-redox process of the oxidation product in the following scans.  相似文献   

17.
Cholesterol oxidase biosensor has been constructed by using bovine serum albumin and glutaraldehyde as cross linker to immobilize cholesterol oxidase and cholesterol esterase on a glassy carbon electrode modified with Nafion and methyl viologen. The biosensor has been used to determine total cholesterol in blood. The linear range of the determination is 2.5×10~7 to 1.0×10-4 mol/L. The detection limit is about 5.0×10~8 mol/L. The response time is 12 s. This biosensor has the advantage of high selectivity, sensitivity and short response time.  相似文献   

18.
The authors describe a voltammetric immunosensor with antibody immobilized on a glassy carbon electrode (GCE) modified with N-doped graphene (N-GS), electrodeposited gold nanoparticles (AuNPs) and chitosan (Chit). The preparation is simple and the thickness of the electrodeposited films can be well controlled. Due to the specific advantages of N-GS, AuNPs and Chit, the electrode has a large specific surface, improved conductivity, high stability. A new label-free immunosensor for the model antigen (alpha fetoprotein, AFP) detection was then designed by employing N-GS-AuNP-Chit as the antibody immobilization and signal amplification platform. Differential pulse voltammetry and electrochemical impedance spectroscopy were used for the characterization of the stepwise assembly process. Under the optimized conditions, at a typical working potential of +0.20 V (vs. SCE), and by using hexacyanoferrate as an electrochemical probe, the immunosensor has a detection limit as low as 1.6 pg mL?1 and a linear analytical range that extends from 5 pg mL?1 to 50 ng mL?1. AFP was quantified in spiked human serum samples with acceptable precision.
Graphical Abstract Schematic of sensitive and effective label-free electrochemical immunosensor for the detection of AFP based on N-GS-AuNP-Chit as signal amplification matrix.
  相似文献   

19.
A modified electrode Ni(II)–Qu–MWCNT-PE has been fabricated by electrodepositing nickel(II)–quercetin [Ni(II)–Qu] complex on the surface of multi-wall carbon nanotube paste electrode (MWCNT-PE) in alkaline solution. Ni(II)–Qu–MWCNT-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)–MWCNT-PE and Ni(II)–Qu-carbon paste electrode. It also shows electrocatalytic activity toward the oxidation of methanol and other short chain aliphatic alcohols, such as ethanol, 1-propanol, and 1-butanol. The catalytic peak current and peak potential decrease in exponential form with the increase of carbon number of the chains. Kinetic parameters such as the electron transfer coefficient, α, rate constant, k s, of the electrode reaction, and the catalytic rate constant, k cat, for oxidation of methanol are determined. The stability and reproducibility of the Ni(II)–Qu–MWCNT-PE are good for practical applications.  相似文献   

20.
Li  Yonghong  Zhai  Xiurong  Wang  Haibo  Liu  Xinsheng  Guo  Le  Ji  Xiaoling  Wang  Ling  Qiu  Hongyan  Liu  Xiaoying 《Mikrochimica acta》2015,182(11):1877-1884

We describe a nonenzymatic electrochemical sensor for uric acid. It is based on a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin) that was prepared in-situ by electropolymerization. The functionalized multi-walled carbon nanotubes and the surface morphology of the modified electrodes were characterized by transmission electronic microscopy and scanning electron microscopy. The electrochemical response of uric acid was studied by cyclic voltammetry and linear sweep voltammetry. The effects of scan rate, pH value, electropolymerization cycles and accumulation time were also studied. Under optimized experimental conditions and at a working voltage of 500 mV vs. Ag/AgCl (3 M KCl), response to uric acid is linear in the 0.6 to 400 μΜ and in the 0.4 to 1 mΜ concentration ranges, and the detection limit is 0.3 μΜ (at an S/N of 3). The electrode was successfully applied to the detection of uric acid in (spiked) human urine samples.

SEM images of (a) carbon ionic liquid electrode (CILE) (b) MWNT-CILE (c) β-CD/CILE (d) β-CD/ MWNT-CILE. The surfaces of carbon ionic liquid electrode (CILE) (a) and MWNT-CILE (b) were homogenous and no separated carbon layers can be observed; After β- cyclodextrin (CD) was modified on CILE and MWNT-CILE, the surfaces of β-CD modified electrodes (c and d) exhibited loose and porous morphologies.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号