首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the fabrication of a biosensor based on graphene coupled with polydimethylsiloxane (PDMS) waveguide. Biosensors work on the principle of local evanescent graphene-coupled wave sensor. It is observed that the evanescent field shifts in the presence of chemical or biological species as evanescent waves are extremely sensitive to a change in refractive index. This method helps to monitor the target analyte by attaching the selective receptor molecules to the surface of the PDMS optical waveguide resulting in its optical intensity distribution shift. We monitor the electrical properties of graphene in the dark and under illumination of PDMS waveguide. The changes in photocurrent through the graphene film were monitored for blue, green, and red light. We observed that the fabricated graphene-coupled PDMS optical waveguide sensor is sensitive to visible light for the used bioanalytes.  相似文献   

2.
The conversion of solar energy to chemical energy useful for maintaining cellular function in photosynthetic algae and cyanobacteria relies critically on light delivery to the microorganisms. Conventional direct irradiation of a bulk suspension leads to non-uniform light distribution within a strongly absorbing culture, and related inefficiencies. The study of small colonies of cells in controlled microenvironments would benefit from control over wavelength, intensity, and location of light energy on the scale of the microorganism. Here we demonstrate that the evanescent light field, confined near the surface of a waveguide, can be used to direct light into cyanobacteria and successfully drive photosynthesis. The method is enabled by the synergy between the penetration depth of the evanescent field and the size of the photosynthetic bacterium, both on the order of micrometres. Wild type Synechococcus elongatus (ATCC 33912) cells are exposed to evanescent light generated through total internal reflection of red (λ = 633 nm) light on a prism surface. Growth onset is consistently observed at intensity levels of 79 ± 10 W m(-2), as measured 1 μm from the surface, and 60 ± 8 W m(-2) as measured by a 5 μm depthwise average. These threshold values agree well with control experiments and literature values based on direct irradiation with daylight. In contrast, negligible growth is observed with evanescent light penetration depths less than the minor dimension of the rod-like bacterium (achieved at larger light incident angles). Collectively these results indicate that evanescent light waves can be used to tailor and direct light into cyanobacteria, driving photosynthesis.  相似文献   

3.
A germanium (Ge) strip waveguide on a silicon (Si) substrate is integrated with a microfluidic chip to detect cocaine in tetrachloroethylene (PCE) solutions. In the evanescent field of the waveguide, cocaine absorbs the light near 5.8 μm, which is emitted from a quantum cascade laser. This device is ideal for (bio-)chemical sensing applications.  相似文献   

4.
ABSTRACT

In a planar dielectric waveguide, weak confinement of a propagating mode in a high index core leads to a measurable evanescent interaction with the cladding. In this work, we study the effect of a reorientable anisotropic cladding on the behaviour of Transverse Electric (TE) and Transverse Magnetic (TM) mode polarisations using a liquid crystal (LC)-clad waveguide architecture. The polarised evanescent field of a guided mode interacts with a voltage-tunable birefringent LC cladding to deflect an out-coupled beam. Experimental measurements are coupled with a theoretical framework and show good consistency with simulation results. We isolate the effect of mode confinement by changing the thickness of the high index core. Interactions between the LC index ellipsoid and the mode polarisation are probed by changing the initial alignment of the LC. Finally, we examine the difference in deflection between TE and TM modes, which incorporates both a change in mode confinement and a difference in LC index components.  相似文献   

5.
Ong BH  Yuan X  Tan YY  Irawan R  Fang X  Zhang L  Tjin SC 《Lab on a chip》2007,7(4):506-512
We demonstrate an enhancement of fluorescence emission due to bimetallic silver-gold film-induced surface plasmon wave extension. Rhodamine B (RhB) dyes were excited by the evanescent wave field produced from surface plasmon polaritons excited on metal-deposited sections along an embedded strip waveguide. Various silver-gold combinations were used to quantify for the evanescent field enhancement. The underlying silver yields better evanescent field enhancement, while the overlying gold ensures that the stability of the sensing surface is not compromised. In comparison to the conventional single gold film surface plasmon resonance (SPR) configuration, the two-layered metallic structure is capable of enhancing the surface plasmon polariton (SPP) evanescent field considerably, as verified experimentally by the ca. 4.0 times improvement in the RhB fluorescence emission. The compact waveguide structure and improved electric field probing depth can potentially be exploited for on-chip SPR--fluorescence excitation of less concentrated fluorophore-labelled biological and chemical analytes, with a capability of massively parallel processing for high throughput screening.  相似文献   

6.
We describe the use of evanescent wave scattering to measure the separation between the surface of a solid and a particle that is attached to an atomic force microscope (AFM) cantilever. Termed evanescent wave atomic force microscopy, our approach involves measuring the intensity of the light scattered from an evanescent field formed by the total internal reflection of a laser beam at a solid/fluid interface. In a conventional AFM "colloid probe" measurement, this separation must be inferred from an examination of the surface forces. Direct measurement of this separation with an evanescent wave atomic force microscope (EW-AFM) removes some ambiguity in the surface force measurement and, in addition, allows new types of measurements. For example, the force can be monitored at a constant separation. Our evanescent scattering apparatus is essentially identical to that used in total internal reflection microscopy (TIRM), except that we collect the light that scatters back into the incident medium, because the AFM partly obscures the forward scattered light (i.e., light scattered into the transmitted region). Compared to a conventional TIRM measurement, where the particle moves freely, attaching the particle to the cantilever in an EW-AFM gives much greater control of the particle position.  相似文献   

7.
The identification of submillimetre phytoplankton is important for monitoring environmental and climate changes, as well as evaluating water for health reasons. Current standard methods for phytoplankton species identification require sample collection and ex situ analysis, an expensive procedure which prevents the rapid identification of phytoplankton outbreaks. To address this, we use a glass-based microchip with a microchannel and waveguide included on a monolithic substrate, and demonstrate its use for identifying phytoplankton species. The microchannel and the specimens inside it are illuminated by laser light from the curved waveguide as algae-laden water is passed through the channel. The intensity distribution of the light collected from the biochip is monitored with an external photodetector. Here, we demonstrate that the characteristics of the photodiode signal from this simple and robust system can provide significant and useful information as to the contents of the channel. Specifically, we show first that the signals are correlated to the size of algae cells. Using a pattern-matching neural network, we demonstrate the successful classification of five algae species with an average 78% positive identification rate. Furthermore, as a proof-of-concept for field-operation, we show that the chip can be used to distinguish between detritus in field-collected water and the toxin-producing cyanobacterium Cyanothece.  相似文献   

8.
In the first part of this paper, the need for analytical techniques capable of highly parallel and sensitive nucleic acid analysis, with the capability of achieving very low limits of detection (LODs) and of resolving small differences in concentration, is described. Whereas the requirement for performing simultaneously multi-analyte detection is solved by the approach of nucleic acid microarrays, requirements on sensitivity can often not be satisfied by classical detection technologies. Inherent limitations of conventional fluorescence excitation and detection schemes are identified, and the implementation of planar waveguides as analytical platforms for nucleic acid microarrays, with fluorescence excitation in the evanescent field associated with the guided excitation light, is proposed. The relevant parameters for an optimization of sensitivity are discussed.In the second part of this paper, the specific formats of our planar waveguide platforms, which are compatible with established industrial standard formats allowing for integration into industrial high throughput environments, are presented, as well as the dedicated optical system for fluorescence excitation and detection that we developed. In a direct comparison with a state-of-the-art scanner, it is demonstrated that the implementation of genomic microarrays on planar waveguide platforms allows for unprecedented, direct detection of low-abundant genes in limited amounts of sample. Otherwise, when using conventional fluorescence excitation and detection configurations, the detection of such low amounts of nucleic acids requires massive sample preparation and signal or target amplification steps.  相似文献   

9.
A new application of the polarized total internal reflection fluorescence (PTIRF) technique to study the orientation distribution of a fluorophore within a Langmuir monolayer in situ on an aqueous subphase is described. The technique utilizes the measurement of polarized fluorescence, excited by the evanescent field appearing upon total internal reflection. The excitation by the evanescent field is achieved by launching the beam into a prism that is brought into contact with the monolayer from above. We also show here that a combination of PTIRF of monolayers on water and those freshly deposited onto the prism by horizontal lift in the same experiment provide enough data to determine the dielectric constant of the actual local environment of the fluorophore in the monolayer to eliminate the ambiguity of the orientation determination, arising from uncertainty in the normal component of excitation field. The new technique was applied to several model systems: fatty acid monolayers containing amphiphilic dyes DiI or BODIPY and also a monolayer of a synthetic amphiphilic porphyrin-binding peptide AP0. This technique is more accurate than polarized epifluorescence (PEF) in determining the fluorophore orientation distribution due to the much higher normal component of the excitation, achievable in the evanescent field, and to the lack of surface vibrations caused by capillary waves. Comparison of the new PTIRF approach with PEF shows that the monolayer structure is not disturbed by weak van der Waals attachment to the hydrophobic substrate.  相似文献   

10.
The evanescent wave light scattering technique, which is produced by a fusion of the evanescent wave technique and light scattering technique, is a very powerful and useful tool for investigation of colloidal particles and polymers near the surface and interfaces. We have developed two kinds of evanescent wave light scattering apparatuses. One is the evanescent wave dynamic light scattering (EVDLS) technique and the other is the evanescent wave light scattering microscope (EVLSM). By EVDLS, the diffusion behavior of a colloidal particle near the interface can be extracted quantitatively as a function of the distance from the interface. The diffusion coefficient was smaller than those for particles in bulk, reflecting electrostatic and hydrodynamic interactions. By EVLSM, the interaction potential profile between a colloidal particle and the surface in dispersion can be evaluated directly. EVLSM will play an important role in colloidal interaction studies, especially at a low ionic strength. It is also pointed out that a particle dynamics study is also possible by the EVLSM technique. A new field will be developed in colloid science and polymer science by application of the evanescent wave light scattering technique, i. e. a fusion of the evanescent light and a light scattering techniques.  相似文献   

11.
Chemically mediated interactions between organisms influence ecosystem structure, making it crucial for ecologists to understand these interactions. Advances in chemical ecology have often been closely linked to advances in analytical chemistry techniques. One recent development is the use of metabolomics to address questions in chemical ecology. Although metabolomics has much to offer this field, it is not without drawbacks. Here we consider how metabolomics techniques can supplement the traditional bioassay-guided fractionation approach to chemical ecology. We focus on specific examples that illustrate the advantages that metabolomic methods can provide over other methods in order to understand chemically mediated interactions between organisms.  相似文献   

12.
Integrated optical Mach-Zehnder interferometers supply information on changes in refractive index and/or thickness of a film placed as a superstrate on top of one of its surface wave-guides. The internal propagation of light is influenced by the evanescent field reaching into the superstrate. This propagating light interferes with an uninfluenced wave in the second arm after recombination. The result is an intensity modulation depending on the refractive index parameters of the substrate, the waveguide itself and the properties of the superstrate. Taking an antigen layer as the superstrate, its interaction with antibodies changes its thickness by several nanometers. This can be observed by recording the change in intensity of the signal of the interferometer. The sensitivity of such a device depends on particular values of the optical parameters of substrate and waveguide with respect to the given superstrate properties. Computer calculations help to select optimum glass and waveguide fabrication conditions. The numerical results of a variety of assumed conditions have been tested experimentally. The application to the improved detection of triazines is discussed.  相似文献   

13.
A full-field generic photonic biosensor approach, which relies on a bio-doped polymeric strip waveguide configuration, is described. We show the potential of tailor-made hybrid polymeric materials prepared by sol-gel technology for the fabrication of ultra-compact biosensor devices, where both the transducer and the recognition elements are merged into one single microstructure. Such devices were fabricated by micromolding in capillaries (MIMIC) soft lithographic technique. In contrast to evanescent field sensors, the sensor response does not only rely on the interaction of the evanescent wave with the recognition element, but on the interaction of the whole field, thus enabling a reduction of the sensor dimensions and/or a decrease of its limit of detection (LOD). The potential of this generic approach was demonstrated by developing a biosensor for the detection of H(2)O(2) using horseradish peroxidase (HRP) as the doping agent. Solutions containing 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS) and different concentrations of H(2)O(2) were dispensed over the waveguide and the green-coloured cation radical ABTS*(+) product was mainly obtained inside the photonic structure, resulting in a maximum absorption increase of 2.5 a.u. at a set working wavelength of 670 nm over the H(2)O(2) concentration range studied. The sensor exhibited a sensitivity of (3.1+/-0.2) x 10(3) a.u./mol L(-1) and a limit of detection (LOD) of 4.4 x 10(-5) mol L(-1) H(2)O(2). These results anticipate that full-field waveguide microstructures based on bio-doped sol-gel polymers will enable the fabrication of cost-effective photonic biosensors. Moreover, the ease of fabrication by a soft lithography technique and the use of such polymeric materials are fully compatible with their integration in compact automatic analysis systems.  相似文献   

14.
We employ an analogy to traditional dynamic light scattering to describe the inhomogeneous and anisotropic diffusion of colloid particles near a solid boundary measured via evanescent wave dynamic light scattering. Following this approach, we generate new expressions for the short-time self- and collective diffusivities of colloidal dispersions with arbitrary volume fraction. We use these expressions in combination with accelerated Stokesian dynamics simulations to calculate the diffusivities in the limit of large and small scattering wave numbers for evanescent penetration depths ranging from four particle radii to one-fifth of a particle radius and volume fractions from 10% to 40%. We show that at high volume fractions, and larger penetration depths, the boundaries have little effect on the dynamics of the suspension parallel to the wall since, to a first approximation, the boundary acts hydrodynamically much as another nearby particle. However, near and normal to the wall, the diffusivity shows a strong dependence on penetration depth for all volume fractions. This is due to the lubrication interactions between the particles and the boundary as the particle moves relative to the wall. These results are novel and comprehensive with respect to the range of penetration depth and volume fraction and provide a complete determination of the effect of hydrodynamic interactions on colloidal diffusion adjacent to a rigid boundary.  相似文献   

15.
Piruska A  Zudans I  Heineman WR  Seliskar CJ 《Talanta》2005,65(5):1110-1119
Spectra of thin highly absorbing Nafion films doped with Ru(bpy)32+ on SF11 glass substrates were studied by internal reflection spectroscopy using a single reflection configuration. For the system under study, two modes of light interaction with the film are available: attenuation due to evanescent wave penetration and light propagation within the absorbing film. Unlike evanescent wave spectroscopy, light propagation within the film causes distortions in the measured spectra due to leaky waveguide propagation modes. Upon light propagation in a film doped with Ru(bpy)32+ spectral shifts up to 50 nm to longer wavelengths can occur and additional absorbance peaks can appear in the spectra. These film-based distortions depend on the complex refractive index, the thickness of the film and the angle of incidence. These effects become significant for an extinction coefficient above 0.01 and a film thickness above 200 nm. It is shown that spectral distortions can lead to quite complex dynamics in the internal reflection spectra upon analyte preconcentration in the film. Ru(bpy)32+ partitioning into the Nafion film causes significant refractive index changes that in turn alter leaky waveguide mode conditions in the film and, can even lead to a reduction of measured absorbance despite the increase in the extinction coefficient of the film.  相似文献   

16.
A new, long-path integrated optical (IO) sensor for the detection of non-polar organic substances is described. The sensing layer deposited on a planar multimode IO structure is built by a suitable silicone polymer with lower refractive index (RI). It acts as a hydrophobic matrix for the reversible enrichment of non-polar organic contaminants from water or air. Light from the near-infrared (NIR) range is coupled into the planar structure and the evanescent wave part of the light field penetrating into the silicone layer interacts with the enriched organic species. As a result, light is absorbed at the characteristic frequencies of the corresponding C-H, N-H or O-H overtone and combination band vibrations of the analytes. To perform evanescent field absorbance (EFA) measurements, the arc-shaped strip waveguide structure of 172 mm interaction length was adapted to a tungsten-halogen lamp and an InGaAs diode array spectrograph over gradient index fibers. Dimethyl-co-methly(phenyl)polysiloxanes with varying degrees of phenylation were prepared and used as sensitive coating materials for the IO structure. Light attenuation in the arc-shaped waveguides is high and typical insertion losses in the range of 14-18 dB were obtained. When the coated sensors were brought in contact with aqueous samples, the light transmission decreases, which is due to the formation of H(2)O micro-emulsions in the silicone superstrates. Nevertheless, after reaching constant light transmissions, absorbance spectra of aqueous trichloroethene samples were successfully collected. For gas measurements, where water cross sensitivity problems are absent, the sensitivity of the IO device for trichloroethene was tested as a function of the RI of the silicone superstrate. The slope of the TCE calibration function increases by a factor of 10 by using a poly(methylphenylsiloxane) layer with a RI of 1.449 instead of poly(dimethylsiloxane) (RI: 1.41). A comparison of the IO-EFA and an earlier developed fiber-optic EFA sensor for trichloroethene measurements in the gas phase showed an increase in sensitivity per unit length of the waveguide by a factor of up to 120.  相似文献   

17.
H Cai  AW Poon 《Lab on a chip》2012,12(19):3803-3809
We study optical trapping of microparticles on an optofluidic chip using silicon nitride waveguide junctions and tapered-waveguide junctions. We demonstrate the trapping of single 1 μm-sized polystyrene particles using the evanescent field of waveguide junctions connecting a submicrometer-sized input-waveguide and a micrometer-sized output-waveguide. Particle trapping is localized in the vicinity of the junction. We also demonstrate trapping of one and two 1μm-sized polystyrene particles using tapered-waveguide junctions connecting a submicrometer-sized singlemode input-waveguide and a micrometer-sized multimode output-waveguide. Particle trapping occurs near the taper output end, the taper center and the taper input end, depending on the taper aspect ratio.  相似文献   

18.
In industry, a vast variety of processes can be optimized by means of online measurement of chemical properties of fluids in order to reduce costs of maintenance or increase productivity as well as production quality. Since the absorption measurement in the mid-IR-region is a powerful method to determine the chemical composition of fluids, we propose a fully integrated absorption sensor based on IR-absorption in the evanescent field region of an integrated mono-mode waveguide utilizing thermally generated and detected IR-radiation. For the coupling, two grating couplers are employed, which couple broadband thermal IR-radiation into the waveguide and the attenuated IR-radiation towards a thermal IR-detector, respectively. To achieve a spectroscopic measurement, we utilize the dispersive feature of the grating coupler, which couples the IR-beams out of the waveguide at angles depending on the frequency. We report on the design of the fully integrated infrared absorption sensor, which is capable to determine chemical properties of, e.g., lubrication oil by investigating infrared absorption. Beside the theory related to an optimum design of the mono-mode waveguide, we discuss the applicability of the proposed concept to the monitoring of deterioration of lubrication oil.  相似文献   

19.
The electric field-induced dynamic phase-matching of second harmonic generation (SHG) waveguide was demonstrated by using a main chain polyarylamine. The linear and nonlinear optical properties of this polymer are presented. The optimum phase-matching thickness was controlled by applying an electric field to the polymer waveguide. The effective phase-matching thickness variation induced by poling is about 0.025 μm that is six times larger than full width at the half-maximum (FWHM) of phase-matching thickness in conventional slab waveguide. The efficient phase-matched SHG was observed from a taperless slab wave-guide. The optical loss of poled polymer on glass substrate at 632.8 nm was 2.7 dB/cm. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
This paper details the design and fabrication of an integrated optical biochemical sensor using a select oxygen-sensitive fluorescent dye, tris(2,2'-bipyridyl) dichlororuthenium(ii) hexahydrate, combined with polymeric waveguides that are fabricated on a glass substrate. The sensor uses evanescent interaction of light confined within the waveguide with the dye that is immobilized on an SU-8 waveguide surface. Adhesion of the dye to the integrated waveguide surface is accomplished using a unique process of spin-coating/electrostatic layer-by-layer formation. The SU-8 waveguide was chemically modified to allow the deposition process. Exposure of the dye molecules to the analyte and subsequent chemical interaction is achieved by directly coupling the fluid channel to the integrated waveguide. The completed sensor was linear in the dissolved oxygen across a wide range of interest and had a sensitivity of 0.6 ppm. A unique fabrication aspect of this sensor is the inherent simplicity of the design, and the resulting rapidity of fabrication, while maintaining a high degree of functionality and flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号