首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study the interaction of Fe(II) and Ni(II) with the related expanded quaterpyridines, 1,2-, 1,3- and 1,4-bis-(5'-methyl-[2,2']bipyridinyl-5-ylmethoxy)benzene ligands (4-6 respectively), incorporating flexible, bis-aryl/methylene ether linkages in the bridges between the dipyridyl domains, was shown to predominantly result in the assembly of [M(2)L(3)](4+) complexes; although with 4 and 6 there was also evidence for the (minor) formation of the corresponding [M(4)L(6)](8+) species. Overall, this result contrasts with the behaviour of the essentially rigid 'parent' quaterpyridine 1 for which only tetrahedral [M(4)L(6)](8+) cage species were observed when reacted with various Fe(II) salts. It also contrasts with that observed for 2 and 3 incorporating essentially rigid substituted phenylene and biphenylene bridges between the dipyridyl domains where reaction with Fe(II) and Ni(II) yielded both [M(2)L(3)](4+) and [M(4)L(6)](8+) complex types, but in this case it was the latter species that was assigned as the thermodynamically favoured product type. The X-ray structures of the triple helicate complexes [H(2)O?Ni(2)(4)(3)](PF(6))(4)·THF·2.2H(2)O, [Ni(2)(6)(3)](PF(6))(4)·1.95MeCN·1.2THF·1.8H(2)O, and the very unusual triple helicate PF(6)(-) inclusion complex, [(PF(6))?Ni(2)(5)(3)](PF(6))(3)·1.75MeCN·5.25THF·0.25H(2)O are reported.  相似文献   

2.
We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).  相似文献   

3.
We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF(6))(2), [1](PF(6))(2)-[5](PF(6))(2), and [{Ru(L-L)(2)}(2)(μ-tape)](PF(6))(4), [6](PF(6))(4)-[10](PF(6))(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4'5,5'-tetramethyl-2,2'-bipyridine)}, respectively, were synthesized. The X-ray structures of tape·2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF(6))(2)·0.5CH(3)CN·0.5toluene, [Ru(dmbpy)(2)(tape)](PF(6))(2)·2toluene and [Ru(dtbbpy)(2)(tape)](PF(6))(2)·3acetone·0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(ii) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazin (tpphz) species.  相似文献   

4.
Four structurally related iridium(III) and ruthenium(II) complexes bearing two polar terpyridyl-stilbene derived chromophores 4-(4-{2-[4-(methoxy)phenyl]ethenyl}phenyl)-2,2'-6',2'-terpyridine (ttpyeneanisole) and 4-(4-{2-[phenyl]ethenyl}phenyl)-2,2'-6',2'-terpyridine (tpystilbene) have been synthesised and characterised in the solid state and in solution. In the solid state, the dihedral angle subtending the pyridyl and tolyl groups of 27.1° in the Ir(III) complex [Ir(ttpyeneanisole)(2)]·3PF(6) is more acute than in the Ru(II) derivative [Ru(tpystilbene)(2)]·2PF(6) (35.5°), indicating the presence of a greater degree of π-delocalisation across the terpyridine unit in the former compound. Their luminescence properties in fluid solution have been investigated following both resonant and non-resonant excitation. We have shown that each of the complexes undergoes two-photon excitation when excited in the near infrared (740 to 820 nm), with two-photon absorption cross sections in the range 11-67 × 10(-50) cm(4) s photon(-1). The larger cross sections for the Ir(III) complexes reflect the differences observed in the solid state. This work therefore demonstrates that such complexes are promising as luminescent markers for 3D imaging and illustrates that simple functionalisation of the chromophores and the choice of metal can lead to marked enhancements in the two-photon cross sections (σ(2)) compared to those of simpler heteroleptic polypyridyl based derivatives.  相似文献   

5.
Seven diiron(II) complexes, [Fe(II)(2)(PMAT)(2)](X)(4), varying only in the anion X, have been prepared, where PMAT is 4-amino-3,5-bis{[(2-pyridylmethyl)-amino]methyl}-4H-1,2,4-triazole and X = BF(4)(-) (1), Cl(-) (2), PF(6)(-) (3), SbF(6)(-) (4), CF(3)SO(3)(-) (5), B(PhF)(4)(-) (6), and C(16)H(33)SO(3)(-) (7). Most were isolated as solvates, and the microcrystalline ([3], [4]·2H(2)O, [5]·H(2)O, and [6]·?MeCN) or powder ([2]·4H(2)O, and [7]·2H(2)O) samples obtained were studied by variable-temperature magnetic susceptibility and Mo?ssbauer methods. A structure determination on a crystal of [2]·2MeOH·H(2)O, revealed it to be a [LS-HS] mixed low spin (LS)-high spin (HS) state dinuclear complex at 90 K, but fully high spin, [HS-HS], at 293 K. In contrast, structures of both [5]·?IPA·H(2)O and [7]·1.6MeOH·0.4H(2)O showed them to be [HS-HS] at 90 K, whereas magnetic and M?ssbauer studies on [5]·H(2)O and [7]·2H(2)O revealed a different spin state, [LS-HS], at 90 K, presumably because of the difference in solvation. None of these complexes undergo thermal spin crossover (SCO) to the fully LS form, [LS-LS]. The PF(6)(-) and SbF(6)(-) complexes, 3 and [4]·2H(2)O, appear to be a mixture of [HS-LS] and [HS-HS] at low temperature, and undergo gradual SCO to [HS-HS] on warming. The CF(3)SO(3)(-) complex [5]·H(2)O undergoes gradual, partial SCO from [HS-LS] to a mixture of [HS-LS] and [HS-HS] at T(1/2) ≈ 180 K. The B(PhF)(4)(-) and C(16)H(33)SO(3)(-) complexes, [6]·(1)/(2)MeCN and [7]·2H(2)O, are approximately [LS-HS] at all temperatures, with an onset of gradual SCO with T(1/2) > 300 K.  相似文献   

6.
New dinuclear Pd(II) and Pt(II) metallocycles of 1-(pyridin-4-ylmethyl)-4,4′-bipyridin-1-ium ligand with an inner cavity were prepared and its inclusion complexes in solution studied. The cavity of macrocycle 6b presents a nearly optimal size to form supramolecular complexes through π-stacking interactions with electron-rich aromatic units. On the contrary, the distance between the two pseudoparallel bipyridinium units in 3b is too short to allow the insertion of aromatic guests.  相似文献   

7.
Six copper(II) complexes of 2-hydroxy-4-methoxybenzaldehyde nicotinoylhydrazone (H2hmbn), 2-hydroxy-4-methoxyacetophenone nicotinoylhydrazone (H2hman), 2-hydroxy-4-methoxybenzaldehyde benzoylhydrazone (H2hmbb) and 2-hydroxy-4-methoxyacetophenone benzoylhydrazone (H2hmab) have been synthesized. The complexes viz. [Cu(hmbn)](2)·2H(2)O (1), [Cu(hman)](2) (2), [Cu(hmbb)](2)·2H(2)O (3), [Cu(hmbb)phen]·1(1/2)H2O (4), [Cu(hmbb)(bipy)·H2O] (5) and [Cu(hmab)phen] (6) were characterized by different physicochemical techniques. The crystal structure of [Cu(hman)phen] is obtained and it has a distorted square pyramidal geometry with π-π stacking interactions and significant C-H π interactions.  相似文献   

8.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

9.
A C2-symmetric enantiopure 4,5-bis(pinene)-2,2'-bipyridine ligand (-)-L was used to investigate the diastereoselectivity in the formation of [ML3]2+ coordination species (M = Fe(II), Ru(II), Os(II), Zn(II), Cd(II), Cu(II), Ni(II)), and [ML2Cl2] (M = Ru(II), Os(II)). The X-ray structures of the [ML3]2+ complexes were determined for Delta-[FeL3](PF6)2, Delta-[RuL3](PF6)2, Lambda-[RuL3](PF6)2, Delta-[OsL3](PF6)2, and Lambda-[OsL3](TfO)2. All of these compounds were also characterized by NMR, CD and UV/VIS absorption spectroscopy. The [FeL3]2+ diastereoisomers were studied in equilibrated solutions at various temperatures and in several solvents. The [RuL3]2+ complexes, which are thermally stable up to 200 degrees C, were photochemically equilibrated.  相似文献   

10.
The compounds fac-(κ(3)-PDP)Mo(CO)(3) {1; PDP = 2-[[2-(1-(pyridin-2-ylmethyl)pyrrolidin-2-yl)pyrrolidin-1-yl]methyl]pyridine}, [(cis-β-PDP)Mo(NO)(CO)]PF(6) ([cis-β-3]PF(6)), [(cis-α-PDP)Mo(NO)(CO)]PF(6) ([cis-α-3]PF(6)), [(cis-α-PDP)Mo(NO)Br]PF(6) ([4]PF(6)), [(trans-PDP)Cu](BF(4))(2)·CH(3)CN ([5](BF(4))(2)·CH(3)CN), and [(trans-PDP)Cu](OSO(2)CF(3))(2) ([5](OSO(2)CF(3))(2)) have been synthesized and structurally characterized by single-crystal X-ray diffraction. These are the first reported complexes of PDP on metal centers other than iron(II). The observed configurations indicate a broader range of accessible PDP topologies than has been reported. The {(cis-α-PDP)Mo(NO)}(+) fragment is found to be less π-basic than the dearomatizing {Tp(MeIm)Mo(NO)} fragment [Tp = hydridotris(1-pyrazolyl)borato; MeIm = 1-methylimidazole].  相似文献   

11.
A series of platinum(II) complexes bearing tridentate cyclometalated C^N^N (C^N^N=6-phenyl-2,2'-bipyridine and π-extended R-C^N^N=3-[6'-(naphthalen-2'-yl)pyridin-2'-yl]isoquinoline) ligands with fluorene units have been synthesised and their photophysical properties have been studied. The fluorene units are incorporated into the cyclometalated ligands by a Suzuki coupling reaction. An increase in the π-conjugation of the cyclometalated ligands confers favourable photophysical properties compared to the 6-phenyl-2,2'-bipyridine analogues. The fluorene-based platinum(II) complexes display vibronic-structured emission bands with λ(max)=558-601 nm, and high emission quantum yields up to 0.76 in degassed dichloromethane. Their emissions are tentatively assigned to excited states with mixed (3)IL/(3)MLCT parentage (IL=intraligand, MLCT=metal-to-ligand charge transfer). The crystal structures of these platinum(II) complexes reveal extensive Pt(II)···π and/or π-π interactions. The fluorene-based platinum(II) complexes are soluble in organic solvents, have high thermal stability with decomposition temperature >350 °C, and can be thermally vacuum-sublimed or solution-processed as phosphorescent dopants for the fabrication of organic light-emitting diodes (OLEDs). A monochromic OLED with 3d as dopant (2 wt%) fabricated by vacuum deposition gave a current efficiency of 14.7 cd A(-1) and maximum brightness of 27000 cd m(-2). A high current efficiency (9.2 cd A(-1)) has been achieved in a solution-processed OLED using complex 3f (5 wt%) doped in a PVK (poly(9-vinylcarbazole)) host.  相似文献   

12.
The synthesis, characterization, and photophysical properties of the N6-N5C bichromophoric [(bpy)2Ru(I)Ru(ttpy)][PF6]3 (bpy is 2,2'-bipyridine and ttpy is 4'-p-tolyl-2,2':6',2'-terpyridine) and [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (I and II are bpy-dipyridylbenzene ditopic ligands bridged by an ethynyl and phenyl unit, respectively) complexes are reported together with the model mononuclear complexes [(bpy)2Ru(I)][PF6]2, [(bpy)2Ru(II)][PF6]2, [Ru(VI)(ttpy)][PF6] (VI is 3,5-di(2-pyridyl)-biphenyl) and [Ru(dpb)(ttpy)][PF(6)] (Hdpb is 1,3-di(2-pyridyl)-benzene). The electrochemical data show that there is little ground state electronic communication between the metal centers in the bimetallic complexes. Selective excitation of the N(5)C unit in the bichromophoric systems leads to luminescence typical for a bis-tridentate cyclometallated ruthenium complex and is similar to the [Ru(VI)(ttpy)][PF6] model complex. In contrast, the luminescence from the tris-bidentate N6 unit is efficiently quenched by energy transfer to the N5C unit. The energy transfer rate has been determined by femtosecond pump-probe measurements to 0.7 ps in the ethynyl-linked [(bpy)2Ru(I)Ru(ttpy)][PF6]3 and to 1.5 ps in the phenyl-linked [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (in acetonitrile solution at 298 K), and is inferred to occur via a Dexter mechanism.  相似文献   

13.
Infrared and laser Raman spectral investigations of [Ni(II)(dppe)Cl2] and [Co(III)(dppe)2Cl2]PF6 have been made to determine the conformation and nature of bonding in Ni(II) and Co(III) dppe complexes. The stereochemistry of the two forms of these complexes has been confirmed. The role of steric interferences in cis-Planar [Ni(II)(dppe)Cl2] complex is interpreted in terms of reduction in symmetry upon coordination. The strong trans influence of the chelating dppe ligand is observed in the [Co(III)(dppe)2Cl2]PF6 complex. Both complexes exhibit the effect of crystalline field on molecular vibrations. The Fermi resonance overtone is also observed in these complexes.  相似文献   

14.
We report here the synthesis and characterization of four dinuclear cyanide-bridged Fe(III)-Cu(II) complexes, based on a tetra- or a pentadentate bispidine ligand (L(1) or L(2), respectively; bispidines are 3,7-diazabiyclo[3.3.1]nonane derivatives) coordinated to the Cu(II) center, and a tridentate bipyridineamide (bpca) coordinated to the low-spin Fe(III) site, with cyanide groups completing the two coordination spheres, one of them bridging between the two metal ions. The four structurally characterized complexes [{Fe(bpca)(CN)(3)}{Cu(L(1)·H(2)O)}]BF(4), [{Fe(bpca)(CN)(3)}{Cu(L(2))}][Fe(bpca)(CN)(3)]·5H(2)O, [{Fe(bpca)(CN)(3)}{Cu(L(2)·MeOH)}]PF(6)·MeOH·H(2)O, and [{Fe(bpca)(CN)(3)}{Cu(L(2))}]PF(6)·2H(2)O belong to different structural isomers. The most important differences are structurally and electronically enforced (direction of the pseudo-Jahn-Teller mode) strong or weak interactions of the copper(II) center with the cyanide bridge. The related strength of the magnetic coupling of the two centers is analyzed with a combination of experimental magnetic, electron paramagnetic resonance (EPR), electronic spectroscopic data together with a ligand-field theory- and density functional theory (DFT)-based analysis.  相似文献   

15.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

16.
Padhi SK  Tanaka K 《Inorganic chemistry》2011,50(21):10718-10723
Cyclometalated Ru(II) complexes having a 3-phenylbenzo[b][1,6]naphthyridine (phbn) ligand have been synthesized and characterized by spectroscopic methods. The photo- and electrochemical redox behavior of the complexes are demonstrated. Complex [Ru(phbn)(bpy)(2)]PF(6) ([1]PF(6)) readily undergoes proton coupled two electron reduction by chemical, electrochemical, and photochemical methods to generate [Ru(phbnHH)(bpy)(2)]PF(6) ([1HH]PF(6)). The photochemical oxidation of [1HH]PF(6) was also observed in presence of p-chloranil.  相似文献   

17.
Three [3]catenanes with cavities large enough to accommodate aromatic guests have been designed and synthesized (yields = 5-20 %) by means of kinetically controlled self-assembly processes. The X-ray structural analysis of one of three [3]catenanes confirmed the presence of a rectangular cavity (dimensions = 7 x 11 A) lined by pi-electron-rich recognition sites and hydrogen-bond acceptor groups. In spite of their apparently ideal recognition features, none of these [3]catenanes bind guests incorporating a pi-electron-deficient bipyridinium unit. However, the template-directed syntheses of the [3]catenanes also produce, in yields of 2-23%, [2]catenanes incorporating a 1,5-dioxynaphtho[38]crown-10 interlocked with a bipyridinium-based tetracationic cyclophane. The X-ray structural analyses of two of these [2]catenanes revealed that a combination of [pi...pi] and [C-H...pi] interactions is responsible for the formation of supramolecular homodimers in the solid state. 1H NMR spectroscopic investigations of the four [2]catenanes demonstrated that supramolecular homodimers are also formed (Ka= 17-31M(-1), T= 185 K) in (CD3)2CO solutions. Dynamic 1H NMR spectroscopy revealed that the 1,5-dioxynaphtho[38]crown-10 and tetracationic cyclophane components in the four [2]catenanes and in the three [3]catenanes circumrotate (deltaGc(not equal to) = 9-14 kcal mol(-1)) through each other's cavity in (CD3)2CO. Similarly, the 1,5-dioxynaphthalene and the bipyridinium ring systems rotate (deltaGc(not equal to) =10-14 kcal mol(-1)) about their [O...O] and [N...N] axes, respectively, in solution.  相似文献   

18.
The chelate ligand tris[(1-vinylimidazol-2-yl)methyl]amine (5) was synthesized in five steps from commercially available starting materials. Upon reaction with ZnCl2 or CuCl2 in the presence of NH4PF6, the complexes [Zn5Cl]PF6 (6) and [Cu5Cl]PF6 (7) were obtained. The structure of both complexes was determined by single-crystal X-ray crystallography. Immobilization of 6 and 7 was achieved by co-polymerization with ethylene glycol dimethacrylate. The supported complexes P6-Zn and P7-Cu were found to be efficient catalysts for the hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) at 50 degrees C. At pH 9.5, the heterogeneous catalyst P7-Cu was 56 times more active than the homogeneous catalyst 7. Partitioning effects, which increase the local concentration of BNPP in the polymer, are shown to contribute to the enhanced activity of the immobilized catalyst.  相似文献   

19.
A family of coordination complexes has been synthesized, each comprising a ruthenium(II) center ligated by a thiacrown macrocycle, [9]aneS(3), [12]aneS(4), or [14]aneS(4), and a pair of cis-coordinated ligands, niotinamide (nic), isonicotinamide (isonic), or p-cyanobenzamide (cbza), that provide the complexes with peripherally situated amide groups capable of hydrogen bond formation. The complexes [Ru([9]aneS(3))(nic)(2)Cl]PF(6), 1(PF(6)); [Ru([9]aneS(3)) (isonic)(2)Cl]PF(6), 2(PF(6)); [Ru([12]aneS(4))(nic)(2)](PF(6))(2), 3(PF(6))(2); [Ru([12]aneS(4))(isonic)(2)](PF(6))(2), 4(PF(6))(2); [Ru([12]aneS(4)) (cbza)(2)](PF(6))(2), 5(PF(6))(2); [Ru([14]aneS(4))(nic)(2)](PF(6))(2), 6(PF(6))(2); [Ru([14]aneS(4))(isonic)(2)](PF(6))(2), 7(PF(6))(2); and [Ru([14]aneS(4))(cbza)(2)](PF(6))(2), 8(PF(6))(2) have been characterized by NMR spectroscopy, mass spectrometry, and elemental analysis. UV/visible spectroscopy shows that each complex exhibits an intense high-energy band (230-255 nm) assigned to a pi-pi* transition and a lower energy band (297-355 nm) assigned to metal-to-ligand charge-transfer transitions. Electrochemical studies indicate good reversibility for the oxidations of complexes with nic and isonic ligands (|I(a)/I(c)| = 1; DeltaEp < 100 mV), In contrast, complexes 5 and 8, which incorporate cbza ligands, display oxidations that are not fully electrochemically reversible (|I(a)/I(c)| = 1, DeltaEp > or = 100 mV). Metal-based oxidation couples between 1.32 and 1.93 V versus Ag/AgCl can be rationalized in term of the acceptor capabilities of the thiacrown ligands and the amide-bearing ligands, as well as the pi-donor capacity of the chloride ligands in compounds 1 and 2. The potential to use these electroactive metal complexes as building blocks for hydrogen-bonded crystalline materials has been explored. Crystal structures of compounds 1(PF(6)).H(2)O, 1(BF(4)).2H(2)O, 2(PF(6)), 3(PF(6))(2), 6(PF(6))(2)CH(3)NO(2), and 8(PF(6))(2) are reported. Four of the six form amide-amide N-H...O hydrogen bonds leading to networks constructed from amide C(4) chains or tapes containing R(2)(2) (8) hydrogen-bonded rings. The other two, 2(PF(6)) and 8(PF(6)), form networks linked through amide-anion N-H...F hydrogen bonds. The role of counterions and solvent in interrupting or augmenting direct amide-amide network propagation is explored, and the systematic relationship between the hydrogen-bonded networks formed across the series of structures is presented, showing the relationship between chain and tape arrangements and the progression from 1D to 2D networks. The scope for future systematic development of electroactive tectons into network materials is discussed.  相似文献   

20.
A series of mixed ligand ruthenium(II) complexes [Ru(pdto)(diimine)](ClO4)2/(PF6)2 1-3 and [Ru(bbdo)(diimine)](ClO4), 4-6, where pdto is 1,8-bis(pyrid-2-yl)-3,6-dithiooctane, bbdo is 1,8-bis(benzimidazol-2-yl)-3,6-dithiooctane and diimine is 1,10-phenanthroline (phen), dipyrido-[3,2-d:2',3'-f]-quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been isolated and characterised by analytical and spectral methods. The complexes [Ru(pdto)(phen)](PF6)2 la, [Ru(pdto)(dpq)(Cl](PF6) 2a, [Ru(bbdo)(phen)](PF6)2 4a and [Ru(bbdo)(dpq)](ClO4)2 5 have been structurally characterized and their coordination geometries around ruthenium(II) are described as distorted octahedral. In la, 4a and 5 the two thioether sulfur and two py/bzim nitrogen atoms of the tetradentate pdto/bbdo ligand are folded around Ru(II) to give predominantly a "cis-alpha" configuration. (I)H NMR spectral data of the complexes support this configuration in solution. In [Ru(pdto)(dpq)Cl](PF6) 2a with a distorted octahedral coordination geometry, one of the two py nitrogens of pdto is not coordinated. The DNA binding constants (Kb: 2, 2.00 +/- 0.02 x 10(4) M(-1), s = 1.0; 3, 3.00 +/- 0.01 x 10(6) M(-1), s = 1.3) determined by absorption spectral titrations of the complexes with CT DNA reveal that 3 interacts with DNA more tightly than 2 through partial intercalation of the extended planar ring of coordinated dppz with the DNA base stack. The DNA binding affinities of the complexes increase with increase in the number of planar aromatic rings in the co-ligand, and on replacing both the py moieties in pdto complexes (1-3) by bzim moieties to give bbdo complexes (4-6). Upon interaction with CT DNA the complexes 1, 2, 5 and 6 show a decrease in anodic current in the cyclic voltammograms. On the other hand, interestingly, 3 and 4 show an increase in anodic current suggesting their involvement in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 6 alters the superhelicity of DNA upon binding with supercoiled pBR322 DNA. The cytotoxicities of the dppz complexes 3 and 6, which avidly bind to DNA, have been examined by screening them against cell lines of different cancer origins. It is noteworthy that 6 exhibits selectivity with higher cytotoxicity against the melanoma cancer cell line (A375) than other cell lines, potency approximately twice that of cisplatin and toxicity to normal cells 3 and 90 times less than cisplatin and adriamycin respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号