首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
徐慧  赵璐  白云峰  冯锋 《无机化学学报》2022,38(7):1226-1240
金纳米棒(gold nanorods,GNRs)具有特殊的光学性质、较大的比表面积、出色的光热转换性能、表面易修饰等特点,在药物递送、光疗、生物成像和化学传感等领域应用十分广泛。适体是短的单链DNA或RNA片段,可特异性识别癌细胞或其表面的膜蛋白。近年来,适体功能化的GNRs在癌症靶向治疗领域显示出良好的应用前景。根据GNRs对癌症作用机制的差异,本文从光热疗法、光动力疗法、化疗和联合疗法4个方面总结了适体功能化的GNRs在癌症靶向治疗中的最新进展,并对该领域面临的主要挑战和发展趋势进行了探讨与展望。  相似文献   

2.
We present here a p H-responsive activatable aptamer probe for targeted cancer imaging based on i-motif-driven conformation alteration. This p H-responsive activatable aptamer probe is composed of two single-stranded DNA. One was used for target recognition, containing a central, target specific aptamer sequence at the 3′-end and an extension sequence at the 5′-end with 5-carboxytetramethylrhodamine(TAMRA) label(denoted as strand A). The other(strand I), being competent to work on the formation of i-motif structure, contained four stretches of the cytosine(C) rich domain and was labeled with a Black Hole Quencher 2(BHQ2) at the 3′-end. At neutral or slightly alkaline p H, strand I was hybridized to the extension sequence of strand A to form a double-stranded DNA probe, termed i-motif-based activatable aptamer probe(I-AAP). Because of proximityinduced energy transfer, the I-AAP was in a "signal off" state. The slightly acidic p H enforced the strand I to form an intramolecular i-motif and then initiated the dehybridization of I-AAP, leading to fluorescence readout in the target recognition. As a demonstration, AS1411 aptamer was used for MCF-7 cells imaging. It was displayed that the I-AAP could be carried out for target cancer cells imaging after being activated in slightly acidic environment. The applicability of I-AAP for tumor tissues imaging has been also investigated by using the isolated MCF-7 tumor tissues. These results implied the I-AAP strategy is promising as a novel approach for cancer imaging.  相似文献   

3.
Glutathione(GSH) is a key maintainer of cellular redox balance and plays an important role in many physiological effects. For example, GSH has been widely implicated in cancer initiation, progression and metastasis. Moreover, the concentrations of GSH in tumor cells can influence drug resistance. Given the serious harmfulness of cancer and the important roles of GSH in cancer, it has great significance to development probes for screening of tumor cells and real-time monitoring of GSH fluctuation...  相似文献   

4.
A sticky-flare gold nanoparticle probe(AuNP-probe) is designed by the combination of locked nucleic acid functionalized silencing of microRNA technology for intracellular microRNA-21(miRNA-21) sensitively detecting, fluorescence imaging,localizing and silencing. The limit of detection is as low as 0.01 n M. Overexpressed miRNA-21 in cancer cells serves as endogenous drug release stimuli to trigger the release of probe-loaded doxorubicin(Dox), which soon translocates into cell nuclei. This multifunctional Dox-loaded AuNP-probe(Dox-AuNP-probe) could induce cancer cell apoptosis effectively through the synergistic effect of gene silencing and chemotherapy. This Dox-AuNP-probe exhibits superior drug potency compared to free Dox molecules, with a cell inhibition rate of 57%(but only 20% for Dox) to wild-type cancer cells and 30%(but 0% for Dox) to drug-resistent cancer cells after 72 h, and this strategy not only has the function of sensing, but also can effectively bypass drug resistance. In MCF-7 xenograft tumor-bearing mice, the Dox-AuNP-probes show greater inhibition for tumor tissues than miRNA-21 targeted AuNP-probes(Targeting-AuNP-probe) or free Dox molecules. Therefore, the Dox-AuNP-probe represents a promising nanotheranostic platform for future applications in cancer molecular imaging and therapy, especially providing a potential strategy to treat resistant cancers.  相似文献   

5.
由于肿瘤内部细胞远离血管, 其氧气消耗量远远超出血液供应量, 因此容易导致肿瘤缺氧. 肿瘤缺氧会引发肿瘤扩散加速、 诱导某些基因过表达及产生药物抗药性等问题. 基于此, 发展性能优异的缺氧响应荧光探针对肿瘤的诊断和治疗具有重要意义. 本文对缺氧响应荧光探针在成像及治疗方面的应用进展进行了综合评述, 介绍了硝基、 偶氮键和醌3种常用的缺氧响应基团, 并探讨了它们在缺氧微环境下的识别机理; 介绍了缺氧响应荧光探针的构建及其在生物成像方面的最新研究成果; 总结了缺氧响应荧光探针在基因治疗、 光动力学治疗、 化学治疗及协同治疗方面的研究进展; 展望了缺氧响应荧光探针在临床诊断和治疗方面的应用前景.  相似文献   

6.
Liu JM  Wang XX  Li FM  Lin LP  Cai WL  Lin X  Zhang LH  Li ZM  Lin SQ 《Analytica chimica acta》2011,708(1-2):130-133
A gold nanorods (GNRs) nonaggregation-based colorimetric probe has been developed for the detection of S(2-) based on that the longitudinal surface plasmon resonance absorption wavelength (LPAW) of GNRs red shifts (Δλ) and the color of the solution distinctly changes on account of the faster stripping of GNRs along longitudinal axis than transverse axis in the process of GNRs reacting with S(2-) ions to form Au(2)S complexes on the GNRs surfaces. The GNRs probe exhibits highly sensitive and selective response toward S(2-) with a wide linear range from 10.0 to 10000.0 μM. The proposed colorimetric probe can be used to visibly detect S(2-) in water samples on line in 15 min with the results agreeing well with those of the optical sensor, showing its great practicality. Moreover, the detection mechanism of the probe is also discussed.  相似文献   

7.
We used coherent anti‐Stokes scattering (CAS) to characterize individual gold nanorods (GNRs) and GNR aggregates. By creating samples with different densities of GNRs on silicon wafer substrates, we were able to determine surface coverage by scanning electron microscopy (SEM) and then correlate the coverage to the CAS intensities of the samples. The observed CAS signal intensity was quadratically dependent on the number of particles. We also examined the CAS signal as a function of the excitation polarization and found that the strongest signals in regularly oriented GNRs were observed when the beam polarization was aligned with the longitudinal axis of the GNRs. Irregularly oriented GNRs exhibited a different scattering pattern to that observed for regularly oriented GNRs. The polarization‐dependent scattering from oriented GNRs showed cos6 (θ) behavior. By imaging nanoscale‐sized GNR patterns using CAS and evaluating the results with SEM, we show that CAS can be used for efficient, label‐free imaging of nanoscale metallic particles.  相似文献   

8.
《化学:亚洲杂志》2017,12(19):2591-2596
Supramolecular‐assembly‐mediated functionalization of gold nanorods (GNRs) has been developed by reversible phase transfer between water and oils, which offers a facile method for fabricating robust GNRs with surface‐charge tunability. In this regard, trimethylammonium (TMA) GNRs were initially prepared from conventional cetyltrimethylammonium bromide (CTAB) GNRs by means of a ligand‐exchange reaction in the presence of an excess amount of TMA ligands. To further expand their functionality and potential applications, electrostatic assemblies of positively charged TMA‐GNRs with negatively charged oleate ions were prepared. These assemblies (OA‐GNRs) can undergo facile phase transfer from water to hexane. Interestingly, the reversible electrostatic assembly between the TMA and OA ions fabricated onto GNRs can be easily disrupted by treatment with HCl, which removes the OA ions from the GNRs to re‐form the TMA‐GNRs, which can be made soluble in aqueous media again. In addition, OA‐GNRs can be further used for the synthesis of negatively charged GNRs such as 11‐mercaptoundecanoic acid (MUA) GNRs, which are hard to prepare directly from CTAB‐GNRs. This versatile method for phase transfer and functionalization on GNRs is expected to broaden the scope of their applications in sensing, biomedical imaging, photothermal therapies, and drug delivery systems.  相似文献   

9.
Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.  相似文献   

10.
《中国化学快报》2023,34(3):107604
Fluorescence image for accurate tumor label still faces challenges in cancer detection and diagnostics. Emerging evidence is indicating that glucose-regulated protein 78 (GRP78), a stress-inducible protein chaperone, is a great potential biomarker and therapeutic target for cancer. However, currently available probe for image tumor based on GRP78 has not been reported, owning to no obvious strategy in probe design towards this protein. In this paper, a hairpin-shaped peptidyl probe (pepFAM) conjugated with a 5-FAM fluorophore and a dabcyl quencher at both ends was developed, respectively. The probe was designed by performing a traditional fluorescence resonance energy transfer mechanism and employing a GRP78 specifically-binding peptide. Furthermore, the probe was used to specifically image cancer cells, and accurately image xenograft tumors in mice models. The novel fluorescent probe is expected to be a useful tool for the diagnostics of cancer.  相似文献   

11.
Strong plasmon absorption in the near-infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study, the weak fluorescence emission of GNRs is tuned to match that of the absorption of a photosensitizer (PS) molecule, and energy transfer from the GNR to PS enhances the emission profile of the GNR–PS combination. GNR complexes generally quench the fluorescence emission of nearby chromophores. However, herein, the complex retains or rather enhances the fluorescence through competition in energy transfer. Excitation-dependent energy transfer has been explained experimentally and theoretically by using DFT calculations, the CIE chromaticity diagram, and power spectrum. The final GNR–PS complex modified for tumor specificity serves as an excellent organ-specific theranostic probe for bioimaging and dual therapy both in vitro and in vivo. Principal component analysis designates photodynamic therapy a better candidate than that of photothermal therapy for long-term efficacy in vivo.  相似文献   

12.
A porphyrin modified by glycine has been synthesized and developed as a near-infrared(NIR) fluorescence probe to detect tumor.Porphyrins'longwavelength emission at ~650 nm can efficiently avoid the spectral crosstalk with Spontaneous fluorescence in the visible light region.A disulfide-based cyclic RGD peptide named iRGD c(CRGDKGPDC),a tumor homing peptide,harbors a cryptic C-end Rule (CendR)motif that is responsible for neuropilin-1(NRP-1)binding and for triggering extravasation and tumor penetration of the peptide to improve the imaging sensitivity and therapeutic efficacy.We used N-hydroxy succinimide as an activator to introduce the glycine methyl ester to detect tumor.We got a porphyrin modified by glycine.The affinity between probe and tumor cell entered GLC-82 cells(human glandular lung cancer cell line)can be observed by Confocal Microscope.The toxicity of probe has been identified by MTT Assay.The summary has been gotten that the porphyrins were nontoxic to GLC-82 cells and glycine modified porphyrin has a good affinity with GLC-82 cells under the iRGD function by our experiment.  相似文献   

13.
Yuan  Haifeng  Zhao  Yan  Yang  Chan  Zhang  Cheng  Yang  Yue  Meng  Hongmin  Huan  Shuangyan  Song  Guosheng  Zhang  Xiaobing 《中国科学:化学(英文版)》2020,63(7):924-935
For chemotherapy, drug delivery systems often suffer from the inefficient drug loading capability, which usually cause systems toxicity and extra burden to excrete carrier itself. Moreover, the cancer therapeutic efficacy is also greatly limited by the specificity of tumor microenvironment for reactive oxygen species(ROS) based cancer therapeutic strategy(e.g., chemodynamic therapy). Herein, we have developed metal-drug coordination nanoplatform that can not only be responsive to tumor microenvironment but also modulate it, so as to achieve efficient treatment of cancer. Excitingly, by employing small molecule drug(6-thioguanine) as ligand copper ions, we achieve a high drug loading rate(60.1%) and 100% of utilization of metal-drug coordination nanoplatform(Cu-TG). Interestingly, Cu-TG possessed high-efficiently horseradish peroxidase-like, glutathione peroxidase-like and catalase-like activity. Under the tumor microenvironment, Cu-TG exhibited the self-reinforcing circular catalysis that is able to amplify the cellular oxidative stress, inducing notable cancer cellular apoptosis. Moreover, Cu-TG could be activated with glutathione(GSH) and facilitated for GSH triggered 6-TG release, higher selective therapeutic effect toward cancer cells, and GSH activated T_1 weight-magnetic resonance imaging. Based on the above properties, Cu-TG exhibited magnetic resonance imaging(MRI) guiding, efficient and synergistic combination of chemodynamic and chemotherapy with self-reinforcing therapeutic outcomes in vivo.  相似文献   

14.
Smart molecular probes and flexible methods are attracting remarkable interest for the visualization of cancer‐related biological and chemical events. In this work, a new fluorescence turn‐on probe with dual‐recognition characteristics for the specific imaging of cancer cells is reported. This new bioprobe is rationally designed by linking tetraphenylethylene (TPE), an aggregation‐induced emission (AIE) fluorophore, with the small peptide IHGHHIISVG (referred to as AP2H), a targeting ligand to the broad‐spectrum cancer‐related protein LAPTM4B. The binding of the probe TPE‐AP2H with the target, both in solution and at the cellular level, switches on the fluorescence of TPE because of the inhibition of internal rotations within the TPE framework. Accordingly, this bioprobe allows the real‐time monitoring and subcellular localization of LAPTM4B in cancer cells, with a very high target‐to‐background ratio for the imaging. Furthermore, brighter fluorescence images are detected after incubation of TPE‐AP2H with tumor cells at lower pH values. Thus, this new bioprobe is more advantageous because it can simultaneously target the LAPTM4B protein and sense the characteristic low‐pH environment of tumor cells. In addition, TPE‐AP2H displays high photostability and low cytotoxicity. Therefore, this new bioprobe is promising for the more accurate and reliable imaging of tumor markers in live cancer cells.  相似文献   

15.
Prostate cancer is one of the most common cancers in men. Cell invasion is an important step in the process of cancer metastasis. Herein, gold nanorods (GNRs) and polyethylene glycol (PEG)-coated GNRs were conjugated with polydopamine (PDA). The PDA-nanoconjugates demonstrated excellent colloidal stability upon lyophilization and dispersion in cell culture media with or without the addition of fetal bovine albumin (FBS), compared to unconjugated GNRs. PDA-nanoconjugates exhibited a considerable cytotoxicity against DU-145 and PC3 prostate cancer cell lines over a concentration range of 48 μg/mL–12 μg/mL, while they were biocompatible over a concentration range of 3.0 μg/mL–0.185 μg/mL. Furthermore, PDA-nanoconjugates demonstrated possible anti-invasion activity towards prostate cancer cell lines, particularly DU-145 cell line, by reducing cell migration and cell adhesion properties. The PDA-nanoconjugates could be considered a promising nano-platform toward cancer treatment by reducing the invasion activity; it could also be considered a drug delivery system for chemotherapeutic agents.  相似文献   

16.
Zhang  Wenmin  Wang  Jun  Su  Lichao  Chen  Hui  Zhang  Lan  Lin  Lisen  Chen  Xiaoyuan  Song  Jibin  Yang  Huanghao 《中国科学:化学(英文版)》2020,63(9):1315-1322
Nanoscale metal-organic frameworks(nano MOFs) have emerged as a promising biomedical nanoplatform because of their unique properties. However, the exploration of nano MOFs in photoacoustic(PA) imaging is still limited. Here, a novel hydrogen sulfide(H2 S)-activated nano copper-based MOF(Cu-MOF) was developed as a near-infrared(NIR) ratiometric PA probe for in vivo monitoring of endogenous H2 S level and orthotopic colorectal cancer imaging via in situ reaction of nano Cu-MOFs with endogenous H_2 S that is closely associated with tumor growth and proliferation in colon cancer. The synthesized nano Cu-MOFs displayed excellent PA responsiveness towards tumor H_2 S level with high selectivity and rapid kinetics. The result suggests the developed probe may provide a unique opportunity to investigate the malignant behaviors of H_2 S-associated events in vivo.  相似文献   

17.
Fluorescent nanoparticles (FNPs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. A novel kind of polymer fluorescent nanoparticles (PFNPs) was synthesized and its application for ovarian cancer imaging with fluorescence microscopy imaging technology was presented in this study. The PFNPs were synthesized with precipitation polymerization by using methacrylic acid (MAA) as monomer, trimethylolpropane trimethacrylate (Trim) as cross-linker, azobisisobutyronitrile (AIBN) as radical initiator and butyl rhodamine B (BTRB) as fluorescent dye. And the fluorescent dye was embedded into the three-dimensional network of the polymer when the polymer was produced. With this method the PFNPs can be prepared easily. And then the PFNPs were successfully modified with anti-Her-2 monoclonal antibody. The fluorescence probe based on anti-Her-2 monoclonal antibody conjugated PFNPs has been used to detect ovarian cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-Her-2 monoclonal antibody conjugated PFNPs can effectively recognize ovarian cancer cells and exhibit good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of ovarian cancer cells.  相似文献   

18.
Small‐molecule‐based multimodal and multifunctional imaging probes play prominent roles in biomedical research and have high clinical translation ability. A novel multimodal imaging platform using base‐catalyzed double addition of thiols to a strained internal alkyne such as bicyclo[6.1.0]nonyne has been established in this study, thus allowing highly selective assembly of various functional units in a protecting‐group‐free manner. Using this molecular platform, novel dual‐modality (PET and NIRF) uPAR‐targeted imaging probe: 64Cu‐CHS1 was prepared and evaluated in U87MG cells and tumor‐bearing mice models. The excellent PET/NIRF imaging characteristics such as good tumor uptake (3.69 %ID/g at 2 h post‐injection), high tumor contrast, and specificity were achieved in the small‐animal models. These attractive imaging properties make 64Cu‐CHS1 a promising probe for clinical use.  相似文献   

19.
Due to the heterogeneous and variable drug sensitivity of tumor cells, real-time monitoring of a patient''s drug response is desirable for implementing personalized and dynamic therapy. Although considerable efforts have been directed at drug screening in living cells, performing repeated drug sensitivity analysis using patient-derived primary tumor cells at the single-cell level remains challenging. Here, we present an efficient approach to assess phenotype-related drug sensitivity at the single-cell level using patient-derived circulating tumor cells (CTCs) based on a drug sensitivity microfluidic chip (DS-Chip). The DS-Chip consists of a drug gradient generator and parallel cell traps, achieving continuous single CTC capture, drug gradient distributions, drug stimulation, fluorescent probe labeling and three-color fluorescence imaging. Based on the established DS-Chip, we investigated the drug sensitivity of single cells by simultaneously monitoring epithelial–mesenchymal transition (EMT) biomarkers and apoptosis in living cells, and verified the correlation between EMT gradients and drug sensitivity. Using the new approach, we further tested the optimal drug response dose in individual CTCs isolated from 5 cancer patients through fluorescence analysis of EMT and apoptosis. The DS-Chip allows noninvasive and real-time measurements of the drug sensitivity of a patient''s tumor cells during therapy. This developed approach has practical significance and can effectively guide drug selection and therapeutic evaluation for personalized medicine.

Due to the heterogeneous and variable drug sensitivity of tumor cells, real-time monitoring of a patient''s drug response is desirable for implementing personalized and dynamic therapy.  相似文献   

20.
癌症的早期诊治是提高癌症患者治愈率的关键。但传统的"always on"型显影剂存在自身背景干扰且易造成"假阳性"等问题。本文利用肿瘤细胞具有弱酸性这一特性,设计合成了p H激活型不对称菁类荧光探针,并选用氨基葡萄糖作为修饰基团以增强探针母体的水溶性并赋予其肿瘤靶向性。该探针具有p H调控的"off-on"可逆的近红外荧光特性,以及与肿瘤弱酸性微环境相吻合的p H响应范围。此外,探针的浓度高达1.0×10~(-5)mol/L时仍未表现出明显的细胞毒性。该探针在细胞水平实现了肿瘤细胞弱酸性微环境的特异性成像。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号