首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional equations of the form f(x + y)g(x ? y) = Σ j=1 n α j (x)β j (y) as well as of the form f1(x + z)f2(y + z)f3(x + y ? z) = Σ j=1 m φ j (x, y)ψ j (z) are solved for unknown entire functions f, g j , β j : ? → ? and f1, f2, f3, ψ j : ? → ?, φ j : ?2 → ? in the cases of n = 3 and m = 4.  相似文献   

2.
We consider quadratic functions f that satisfy the additional equation y2 f(x) =  x2 f(y) for the pairs \({ (x,y) \in \mathbb{R}^2}\) that fulfill the condition P(x, y) =  0 for some fixed polynomial P of two variables. If P(x, y) =  axbyc with \({ a , b , c \in \mathbb{R}}\) and \({(a^2 + b^2)c \neq 0}\) or P(x,y) =  x n ? y with a natural number \({n \geq 2}\), we prove that f(x) =  f(1) x2 for all \({x \in \mathbb{R}}\). Some related problems, admitting quadratic functions generated by derivations, are considered as well.  相似文献   

3.
For the nonautonomous Lotka-Volterra model
$\dot x = \alpha (t)(x - M^{ - 1} x^2 - K^{ - 1} (x - \phi (x,y))y),\dot y = \beta (t)y(L^{ - 1} (x - \phi (x,y)) - 1),$
where some part φ(x, y) of the prey population is out of reach of the predator, we obtain sufficient conditions for the existence of a positive asymptotically stable equilibrium in the domain of admissible values of the variables x and y. We consider the cases in which φ(x, y) = m, φ(x, y) = mx, and φ(x, y) = my.
  相似文献   

4.
It is proved that if an entire function f: ? → ? satisfies an equation of the form α 1(x)β 1(y) + α 2(x)β 2(y) + α 3(x)β 3(y), x,y ∈ C, for some α j , β j : ? → ? and there exist no \({\widetilde \alpha _j}\) and ?\({\widetilde \beta _j}\) for which \(f\left( {x + y} \right)f\left( {x - y} \right) = {\overline \alpha _1}\left( x \right){\widetilde \beta _1}\left( y \right) + {\overline \alpha _2}\left( x \right){\widetilde \beta _2}\left( y \right)\), then f(z) = exp(Az 2 + Bz + C) ? σ Γ(z - z 1) ? σ Γ(z - z 2), where Γ is a lattice in ?; σ Γ is the Weierstrass sigma-function associated with Γ; A,B,C, z 1, z 2 ∈ ?; and \({z_1} - {z_2} \notin \left( {\frac{1}{2}\Gamma } \right)\backslash \Gamma \).  相似文献   

5.
We prove generalized Hyers-Ulam–Rassias stability of the cubic functional equation f(kx+y)+f(kx?y)=k[f(x+y)+f(x?y)]+2(k 3?k)f(x) for all \(k\in \Bbb{N}\) and the quartic functional equation f(kx+y)+f(kx?y)=k 2[f(x+y)+f(x?y)]+2k 2(k 2?1)f(x)?2(k 2?1)f(y) for all \(k\in \Bbb{N}\) in non-Archimedean normed spaces.  相似文献   

6.
In this paper we present a new algorithm for solving polynomial equations based on the Taylor series of the inverse function of a polynomial, f P (y). The foundations of the computing of such series have been previously developed by the authors in some recent papers, proceeding as follows: given a polynomial function \(y=P(x)=a_0+a_1x+\cdots+a_mx^m\), with \(a_i \in \mathcal{R}, 0 \leq i \leq m\), and a real number u so that P′(u)?≠?0, we have got an analytic function f P (y) that satisfies x?=?f P (P(x)) around x?=?u. Besides, we also introduce a new proof (completely different) of the theorems involves in the construction of f P (y), which provide a better radius of convergence of its Taylor series, and a more general perspective that could allow its application to other kinds of equations, not only polynomials. Finally, we illustrate with some examples how f P (y) could be used for solving polynomial systems. This question has been already treated by the authors in preceding works in a very complex and hard way, that we want to overcome by using the introduced algorithm in this paper.  相似文献   

7.
8.
Let g be a linear combination with quasipolynomial coefficients of shifts of the Jacobi theta function and its derivatives in the argument. All entire functions f: ? → ? satisfying f(x+y)g(x?y) = α1(x)β1(y)+· · ·+αr(x)βr(y) for some r ∈ ? and αj, βj: ? → ? are described.  相似文献   

9.
Let x 0 be a nonzero vector in \({\mathbb{C}^{n}}\) , and let \({U\subseteq \mathcal{M}_{n}}\) be a domain containing the zero matrix. We prove that if φ is a holomorphic map from U into \({\mathcal{M}_{n}}\) such that the local spectrum of TU at x 0 and the local spectrum of φ(T) at x 0 have always a common value, then T and φ(T) have always the same spectrum, and they have the same local spectrum at x 0 a.e. with respect to the Lebesgue measure on U. If \({\varphi \colon U\rightarrow \mathcal{M}_{n}}\) is holomorphic with φ(0) = 0 such that the local spectral radius of T at x 0 equals the local spectral radius of φ(T) at x 0 for all TU, there exists \({\xi \in \mathbb{C}}\) of modulus one such that ξT and φ(T) have the same spectrum for all T in U. We also prove that if for all TU the local spectral radius of φ(T) coincides with the local spectral radius of T at each vector x, there exists \({\xi \in \mathbb{C}}\) of modulus one such that φ(T) = ξT on U.  相似文献   

10.
Let(T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote byω(x,f) and P(f) the ω-limit set of x under f and the set of periodic points of,respectively. Write Ω(x,f) = {y| there exist a sequence of points x_k E T and a sequence of positive integers n_1 n_2 … such that lim_(k→∞)x_k=x and lim_(k→∞)f~(n_k)(x_k) =y}. In this paper, we show that the following statements are equivalent:(1) f is equicontinuous.(2) ω(x, f) = Ω(x,f) for any x∈T.(3) ∩_(n=1)~∞f~n(T) = P(f),and ω(x,f)is a periodic orbit for every x ∈ T and map h : x→ω(x,f)(x ET)is continuous.(4) Ω(x,f) is a periodic orbit for any x∈T.  相似文献   

11.
In this paper,we study the relationship between iterated resultant and multivariate discriminant.We show that,for generic form f(x_n) with even degree d,if the polynomial is squarefreed after each iteration,the multivariate discriminant △(f) is a factor of the squarefreed iterated resultant.In fact,we find a factor Hp(f,[x_1,...,x_n]) of the squarefreed iterated resultant,and prove that the multivariate discriminant △(f) is a factor of Hp(f,[x_1,...,x_n]).Moreover,we conjecture that Hp(f,[x_1,...,x_n]) = △(f) holds for generic form/,and show that it is true for generic trivariate form f(x,y,z).  相似文献   

12.
This paper is concerned with the existence of positive solutions of the third-order boundary value problem with full nonlinearity
$$\begin{aligned} \left\{ \begin{array}{lll} u'''(t)&{}=f(t,u(t),u'(t),u''(t)),\quad t\in [0,1],\\ u(0)&{}=u'(1)=u''(1)=0, \end{array}\right. \end{aligned}$$
where \(f:[0,1]\times \mathbb {R}^+\times \mathbb {R}^+\times \mathbb {R}^-\rightarrow \mathbb {R}^+\) is continuous. Under some inequality conditions on f as |(xyz)| small or large enough, the existence results of positive solution are obtained. These inequality conditions allow that f(txyz) may be superlinear, sublinear or asymptotically linear on x, y and z as \(|(x,y,z)|\rightarrow 0\) and \(|(x,y,z)|\rightarrow \infty \). For the superlinear case as \(|(x,y,z)|\rightarrow \infty \), a Nagumo-type growth condition is presented to restrict the growth of f on y and z. Our discussion is based on the fixed point index theory in cones.
  相似文献   

13.
The recent articles of Arutyunov and Greshnov extend the Banach and Hadler Fixed-Point Theorems and the Arutyunov Coincidence-Point Theorem to the mappings of (q1, q2)-quasimetric spaces. This article addresses similar questions for f-quasimetric spaces.Given a function f: R +2 → R+ with f(r1, r2) → 0 as (r1, r2) → (0, 0), an f-quasimetric space is a nonempty set X with a possibly asymmetric distance function ρ: X2 → R+ satisfying the f-triangle inequality: ρ(x, z) ≤ f(ρ(x, y), ρ(y, z)) for x, y, zX. We extend the Banach Contraction Mapping Principle, as well as Krasnoselskii’s and Browder’s Theorems on generalized contractions, to mappings of f-quasimetric spaces.  相似文献   

14.
Let d ? 3 be an integer, and set r = 2d?1 + 1 for 3 ? d ? 4, \(\tfrac{{17}}{{32}} \cdot 2^d + 1\) for 5 ? d ? 6, r = d2+d+1 for 7 ? d ? 8, and r = d2+d+2 for d ? 9, respectively. Suppose that Φ i (x, y) ∈ ?[x, y] (1 ? i ? r) are homogeneous and nondegenerate binary forms of degree d. Suppose further that λ1, λ2,..., λ r are nonzero real numbers with λ12 irrational, and λ1Φ1(x1, y1) + λ2Φ2(x2, y2) + · · · + λ r Φ r (x r , y r ) is indefinite. Then for any given real η and σ with 0 < σ < 22?d, it is proved that the inequality
$$\left| {\sum\limits_{i = 1}^r {{\lambda _i}\Phi {}_i\left( {{x_i},{y_i}} \right) + \eta } } \right| < {\left( {\mathop {\max \left\{ {\left| {{x_i}} \right|,\left| {{y_i}} \right|} \right\}}\limits_{1 \leqslant i \leqslant r} } \right)^{ - \sigma }}$$
has infinitely many solutions in integers x1, x2,..., x r , y1, y2,..., y r . This result constitutes an improvement upon that of B. Q. Xue.
  相似文献   

15.
In the paper, it is proved that, if f(x1,..., xn)g(y1,..., ym) is a multilinear central polynomial for a verbally prime T-ideal Γ over a field of arbitrary characteristic, then both polynomials f(x1,..., xn) and g(y1,..., ym) are central for Γ.  相似文献   

16.
Let (X, d) be a locally compact separable ultrametric space. Let D be the set of all locally constant functions having compact support. Given a measure m and a symmetric function J(x, y) we consider the linear operator LJf(x) = ∫(f(x) ? f(y)) J(x, y)dm(y) defined on the set D. When J(x, y) is isotropic and satisfies certain conditions, the operator (?LJ, D) acts in L2(X,m), is essentially self-adjoint and extends as a self-adjoint Markov generator, its Markov semigroup admits a continuous heat kernel pJ (t, x, y). When J(x, y) is not isotropic but uniformly in x, y is comparable to isotropic function J(x, y) as above the operator (?LJ, D) extends in L2(X,m) as a self-adjointMarkov generator, its Markov semigroup admits a continuous heat kernel pJ(t, x, y), and the function pJ(t, x, y) is uniformly comparable in t, x, y to the function pJ(t, x, y), the heat kernel related to the operator (?LJ,D).  相似文献   

17.
Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in 2+1 dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form vt = vxvy - ?x-1?y[vy + vx2], where the formal integral ?x?1 becomes the asymmetric integral \( - \int_x^\infty {dx'} \). We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function f(X, Y) over a parabola in the plane (X, Y) can be expressed in terms of the integrals of f(X, Y) over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.  相似文献   

18.
In this paper, we investigate some stability results concerning the k-cubic functional equation f(kx + y) + f(kx?y) = kf(x + y) + kf(x?y) + 2k(k2?1)f(x) in the intuitionistic fuzzy n-normed spaces.  相似文献   

19.
Let J be the Lévy density of a symmetric Lévy process in \(\mathbb {R}^{d}\) with its Lévy exponent satisfying a weak lower scaling condition at infinity. Consider the non-symmetric and non-local operator
$$\mathcal{L}^{\kappa}f(x):= \lim_{{\varepsilon} \downarrow 0} {\int}_{\{z \in \mathbb{R}^{d}: |z|>{\varepsilon}\}} (f(x+z)-f(x))\kappa(x,z)J(z)\, dz\, , $$
where κ(x, z) is a Borel function on \(\mathbb {R}^{d}\times \mathbb {R}^{d}\) satisfying 0 < κ 0κ(x, z) ≤ κ 1, κ(x, z) = κ(x,?z) and |κ(x, z) ? κ(y, z)|≤ κ 2|x ? y| β for some β ∈ (0, 1]. We construct the heat kernel p κ (t, x, y) of \(\mathcal {L}^{\kappa }\), establish its upper bound as well as its fractional derivative and gradient estimates. Under an additional weak upper scaling condition at infinity, we also establish a lower bound for the heat kernel p κ .
  相似文献   

20.
Let S be a countable semigroup acting in a measure-preserving fashion (g ? T g ) on a measure space (Ω, A, µ). For a finite subset A of S, let |A| denote its cardinality. Let (A k ) k=1 be a sequence of subsets of S satisfying conditions related to those in the ergodic theorem for semi-group actions of A. A. Tempelman. For A-measureable functions f on the measure space (Ω, A, μ) we form for k ≥ 1 the Templeman averages \(\pi _k (f)(x) = \left| {A_k } \right|^{ - 1} \sum\nolimits_{g \in A_k } {T_g f(x)}\) and set V q f(x) = (Σ k≥1|π k+1(f)(x) ? π k (f)(x)|q)1/q when q ∈ (1, 2]. We show that there exists C > 0 such that for all f in L 1(Ω, A, µ) we have µ({x ∈ Ω: V q f(x) > λ}) ≤ C(∫Ω | f | dµ/λ). Finally, some concrete examples are constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号