首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the rough bilinear fractional integral
$ \tilde B_{\Omega ,\alpha } (f,g)(x) = \int_{\mathbb{R}^n } {f(x + y)g(x - y)\frac{{\Omega (x,y')}} {{\left| y \right|^{n - \alpha } }}dy} , $ \tilde B_{\Omega ,\alpha } (f,g)(x) = \int_{\mathbb{R}^n } {f(x + y)g(x - y)\frac{{\Omega (x,y')}} {{\left| y \right|^{n - \alpha } }}dy} ,   相似文献   

2.
In this paper,the parameterized Marcinkiewicz integrals with variable kernels defined by μΩ^ρ(f)(x)=(∫0^∞│∫│1-y│≤t Ω(x,x-y)/│x-y│^n-p f(y)dy│^2dt/t1+2p)^1/2 are investigated.It is proved that if Ω∈ L∞(R^n) × L^r(S^n-1)(r〉(n-n1p'/n) is an odd function in the second variable y,then the operator μΩ^ρ is bounded from L^p(R^n) to L^p(R^n) for 1 〈 p ≤ max{(n+1)/2,2}.It is also proved that,if Ω satisfies the L^1-Dini condition,then μΩ^ρ is of type(p,p) for 1 〈 p ≤ 2,of the weak type(1,1) and bounded from H1 to L1.  相似文献   

3.
In this paper, we prove that the maximal operatorsatisfiesis homogeneous of degree 0, has vanishing moment up to order M and satisfies Lq-Dini condition for some  相似文献   

4.
Lp (\mathbbRn )L^{p} (\mathbb{R}^{n} ) boundedness is considered for the maximal multilinear singular integral operator which is defined by
$T^{*}_{A} f(x) = {\mathop {\sup }\limits_{ \in > 0} }{\left| {{\int_{|x - y| > \in } {\frac{{\Omega (x - y)}} {{|x - y|^{{n + 1}} }}} }(A(x) - A(y) - \nabla A(y)(x - y))f(y)dy} \right|},$T^{*}_{A} f(x) = {\mathop {\sup }\limits_{ \in > 0} }{\left| {{\int_{|x - y| > \in } {\frac{{\Omega (x - y)}} {{|x - y|^{{n + 1}} }}} }(A(x) - A(y) - \nabla A(y)(x - y))f(y)dy} \right|},  相似文献   

5.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

6.
In this paper, the two-dimensional Marcinkewicz integral introduced by Stein μ(f)(x)=(∫_0~x|∫_(|x-y|≤1) _(|x-y|)~(Ω(x-y))f(y)dy|~2t~(-3)dt)~2is shown to be of weak type (1,1) and weighted weak type (1,1) with respect to power weight |x|~" if- 1< α< 0, where Ω is homogeneous of degree 0. has mean value 0 and belongs to Llog~+L(S~1).  相似文献   

7.
This note is a study of approximation of classes of functions and asymptotic simultaneous approximation of functions by theM n -operators of Meyer-König and Zeller which are defined by $$(M_n f)(x) = (1 - x)^{n + 1} \sum\limits_{k = 0}^\infty {f\left( {\frac{k}{{n + k}}} \right)} \left( \begin{array}{l} n + k \\ k \\ \end{array} \right)x^k , n = 1,2,....$$ Among other results it is proved that for 0<α≤1 $$\mathop {\lim }\limits_{n \to \infty } n^{\alpha /2} \mathop {\sup }\limits_{f \in Lip_1 \alpha } \left| {(M_n f)(x) - f(x)} \right| = \frac{{\Gamma \left( {\frac{{\alpha + 1}}{2}} \right)}}{{\pi ^{1/2} }}\left\{ {2x(1 - x)^2 } \right\}^{\alpha /2} $$ and if for a functionf, the derivativeD m+2 f exist at a pointx∈(0, 1), then $$\mathop {\lim }\limits_{n \to \infty } 2n[D^m (M_n f) - D^m f] = \Omega f,$$ where Ω is the linear differential operator given by $$\Omega = x(1 - x)^2 D^{m + 2} + m(3x - 1)(x - 1)D^{m + 1} + m(m - 1)(3x - 2)D^m + m(m - 1)(m - 2)D^{m - 1} .$$   相似文献   

8.
In this paper we give the (Lα p, Lp) boundedness of the maximal operator of a class of super singular integrals defined bywhich improves and extends the known result. Moreover, by applying an off-Diagonal T1 Theorem, we also obtain the (Lp, Lq) boundedness of the commutator defined by  相似文献   

9.
In the present paper, we deal with the existence and multiplicity of solutions for the following impulsive fractional boundary value problem
$$\begin{aligned} {_{t}}D_{T}^{\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) + a(t)|u(t)|^{p-2}u(t)= & {} f(t,u(t)),\;\;t\ne t_j,\;\;\hbox {a.e.}\;\;t\in [0,T],\\ \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} I_j(u(t_j))\;\;j=1,2,\ldots ,n,\\ u(0)= & {} u(T) = 0. \end{aligned}$$
where \(\alpha \in (1/p, 1]\), \(1<p<\infty \), \(0 = t_0<t_1< t_2< \cdots< t_n < t_{n+1} = T\), \(f:[0,T]\times \mathbb {R} \rightarrow \mathbb {R}\) and \(I_j : \mathbb {R} \rightarrow \mathbb {R}\), \(j = 1, \ldots , n\), are continuous functions, \(a\in C[0,T]\) and
$$\begin{aligned} \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right) \\&- {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^-\right) \right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right)= & {} \lim _{t \rightarrow t_j^+} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j^-)\right)= & {} \lim _{t\rightarrow t_j^-}{_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) . \end{aligned}$$
By using variational methods and critical point theory, we give some criteria to guarantee that the above-mentioned impulsive problems have at least one weak solution and a sequences of weak solutions.
  相似文献   

10.
Let \(n\ge 2\) and \(g_{\lambda }^{*}\) be the well-known high-dimensional Littlewood–Paley function which was defined and studied by E. M. Stein,
$$\begin{aligned} g_{\lambda }^{*}(f)(x) =\bigg (\iint _{\mathbb {R}^{n+1}_{+}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda } |\nabla P_tf(y,t)|^2 \frac{\mathrm{d}y \mathrm{d}t}{t^{n-1}}\bigg )^{1/2}, \ \quad \lambda > 1, \end{aligned}$$
where \(P_tf(y,t)=p_t*f(y)\), \(p_t(y)=t^{-n}p(y/t)\), and \(p(x) = (1+|x|^2)^{-(n+1)/2}\), \(\nabla =(\frac{\partial }{\partial y_1},\ldots ,\frac{\partial }{\partial y_n},\frac{\partial }{\partial t})\). In this paper, we give a characterization of two-weight norm inequality for \(g_{\lambda }^{*}\)-function. We show that \(\big \Vert g_{\lambda }^{*}(f \sigma ) \big \Vert _{L^2(w)} \lesssim \big \Vert f \big \Vert _{L^2(\sigma )}\) if and only if the two-weight Muckenhoupt \(A_2\) condition holds, and a testing condition holds:
$$\begin{aligned} \sup _{Q : \text {cubes}~\mathrm{in} \ {\mathbb {R}^n}} \frac{1}{\sigma (Q)} \int _{{\mathbb {R}^n}} \iint _{\widehat{Q}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda }|\nabla P_t(\mathbf {1}_Q \sigma )(y,t)|^2 \frac{w \mathrm{d}x \mathrm{d}t}{t^{n-1}} \mathrm{d}y < \infty , \end{aligned}$$
where \(\widehat{Q}\) is the Carleson box over Q and \((w, \sigma )\) is a pair of weights. We actually prove this characterization for \(g_{\lambda }^{*}\)-function associated with more general fractional Poisson kernel \(p^\alpha (x) = (1+|x|^2)^{-{(n+\alpha )}/{2}}\). Moreover, the corresponding results for intrinsic \(g_{\lambda }^*\)-function are also presented.
  相似文献   

11.
Let→b=(b1,b2,…,bm),bi∈∧βi(Rn),1≤I≤m,βi>0,m∑I=1βi=β,0<β<1,μΩ→b(f)(x)=(∫∞0|F→b,t(f)(x)|2dt/t3)1/2,F→b,t(f)(x)=∫|x-y|≤t Ω(x,x-y)/|x-y|n-1 mΠi=1[bi(x)-bi(y)dy.We consider the boundedness of μΩ,→b on Hardy type space Hp→b(Rn).  相似文献   

12.
A general algorithm is proposed for constructing interlineation operators , x=(x1, x2) with the properties
  相似文献   

13.
We study the question of the existence of the global minimum of the functional
  相似文献   

14.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

15.
Let f be a complex-valued multiplicative function, letp denote a prime and let π(x) be the number of primes not exceeding x. Further put $$m_p (f): = \mathop {\lim }\limits_{x \to \infty } \frac{1}{{\pi (x)}}\sum\limits_{p \leqslant x} {f(p + 1)} {\text{, }}M(f): = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {f(n)}$$ and suppose that $$\mathop {\lim \sup }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {\left| {f\left( n \right)} \right|^2 } < \infty ,\sum\limits_{p \leqslant x} {\left| {f\left( n \right)} \right|^2 } \ll x\left( {\ln x} \right)^{ - \varrho } ,$$ with some \varrho > 0. For such functions we prove: If there is a Dirichlet character χ_d such that the mean-value M(f χ_d) exists and is different from zero,then the mean-value m_p(f) exists. If the mean-value M(f) exists, then the same is true for the mean-valuem_p(f) .  相似文献   

16.
The purpose of this work is the analysis of the solutions to the following problems related to the fractional p-Laplacian in a Lipschitzian bounded domain \({\Omega \subset \mathbb{R}^N}\),
$$\left\{\begin{array}{lll}-\int_{\mathbb{R}^N}\frac{|u(y)-u(x)|^{p-2}(u(y)-u(x))}{|x-y|^{\alpha p}}\;dy=f(x,u)\;\;&x\in \Omega,\\ u=g(x) &x\in\mathbb{R}^N\setminus \Omega,\end{array}\right.$$
where \({\alpha\in(0,1)}\) and the exponent p goes to infinity. In particular we will analyze the cases:
  1. (i)
    \({f=f(x).}\)
     
  2. (ii)
    \({f=f(u)=|u|^{\theta(p)-1} u \, {\rm with} \, 0 < \theta(p) < p -1 \, {\rm and} \, \lim_{p\to\infty}\frac{\theta(p)}{p-1}=\Theta < 1 \, {\rm with} \, g \geq 0.}\)
     
We show the convergence of the solutions to certain limit as \({p\to\infty}\) and identify the limit equation. In both cases, the limit problem is closely related to the Infinity Fractional Laplacian:
$$\mathcal{L}_\infty v(x)=\mathcal{L}_\infty^+ v(x)+\mathcal{L}_\infty^- v(x),$$
where
$$\mathcal{L}_\infty^+ v(x)=\sup_{y\in\mathbb{R}^N}\frac{v(y)-v(x)}{|y-x|^\alpha}, \quad \mathcal{L}_\infty^- v(x)=\inf_{y\in\mathbb{R}^N}\frac{v(y)-v(x)}{|y-x|^\alpha}.$$
  相似文献   

17.
We establish conditions for the existence and uniqueness of a generalized solution of the Cauchy problem for the equation
in a Tikhonov-type class. Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 5, pp. 586–602, May, 2008.  相似文献   

18.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

19.
A measure μ is called Carleson measure,iff the condition of Carleson type μ(Q~*)≤C|Q|~α(a≥1)is satisfied,where C is a constant independent of the cube Q with edge lengthq>0 in R~n and Q~*={(y,t)∈R_+~(+1)|y∈Q,0相似文献   

20.
For the numerical evaluation of Cauchy principal value integrals of the form f(x)(x - λ) -1dx withλ ∈ (-1,1)and f ∈ C1[-1,1], we investigate the quadrature formula Q(n+1)Spl1[·;λ] obtained by replacing the integrand function f by its piecewise linear interpolant at an equidistant set of nodes as proposed by Rabinoivitz (Math. Comp. , 51:741 - 747,1988). We give upper bounds for the Peano - type error constantsfor s∈ {1,2}. These are the best possible constants in inequalities of the typeFurthermore, we prove that our upper bounds are asymptotically sharp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号