首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate a high-energy good-beam-quality krypton-lamp-pumped pulsed Nd: YA G solid-state laser with one pump cavity. The symmetrical resonator laser is developed and is rated at 80 J with beam parameter product 12mm mrad. The total system electro-optics efficiency of the lamp-pumped YAG laser is as high as 3.3% and the stability of output energy is ±2% with pulse width tunable between 0.1 ms and 10ms. The experimental results are consistent with the theoretical analysis and simulation.  相似文献   

2.
The influence of the direct pumping into the 4F3/2 emitting level on the output characteristics of continuous-wave (CW) pumped, passively or actively (acoustooptic, AO) Q-switched Nd lasers is discussed. In case of passive Q-switching by Cr4+:YAG saturable absorber (SA) crystal, the change of pumping wavelength from 0.81 μm into the highly-absorbing 4F5/2 level to 0.88 μm into the 4F3/2 level of Nd does not modify the energy of the Q-switch pulse, but increases the pulse repetition rate and the laser average power for the same absorbed pump power. This is demonstrated with 0.81 and 0.88 μm CW laser diode-pumped Nd:YAG and Nd-vanadate lasers with average output power in the watt-level range at 1.06 μm. The effect is explained by the control of passive Q-switching by the intracavity photon flux that is influenced by the pump wavelength and by the initial transmission of the SA crystal. On the other hand, it is discussed and experimentally proved that due to the possibility to control externally the frequency of switching, in case of the AO Q-switched Nd laser the change of the pump wavelength from 0.81 to 0.88 μm increases the pulse energy for a fixed frequency, leading to a corresponding increase of the average laser power.  相似文献   

3.
A high power dual-wavelength Ti:sapphire laser system with wide turning range and high efficiency is described, which consists of two prism-dispersed resonators pumped by an a11-solid-state frequency-doubled Nd:YAG laser. Tunable dual-wavelength outputs, with one wavelength range from 750nm to 795nm and the other from 80Ohm to 850nm, have been demonstrated. With a pump power of 23 W at 532nm, a repetition rate of 6.5kHz and a pulse width of 67.6ns, the maximum dual-wavelength output power of 5.6 W at 785.3nm and 812.1 run, with a pulse width of 17.2ns and a line width of 2nm, has been achieved, leading to an optical-to-optical conversion efficiency of 24.4%.  相似文献   

4.
We demonstrate a high-power nonlinear mirror (NLM) mode-locked Nd:YVO4 laser with a periodically poled KTP (PPKTP). With a 10-mm-long PPKTP crystal, 5.6 W of average power with 20-ps of pulse duration was generated at 18-W of pump power. Compared with conventional type-II KTP crystal with the same length, the stability against the Q-switched mode-locking (QML) is significantly increased with PPKTP in NLM laser; and the pulse duration was also considerably reduced. Received: 21 July 2000 / Revised version: 30 August 2000 / Published online: 10 January 2001  相似文献   

5.
A diode-laser-array end-pumped acousto-optically Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green laser, formed with a three-mirror folded resonator, has been demonstrated. With 15 W of pump power incident upon the Nd:GdVO4 crystal, a maximum average green output power of 3.75 W was obtained at 50 kHz of pulse repetition frequency, giving an optical conversion efficiency of 25%, whereas the effective intracavity frequency-doubling efficiency was determined to be 72%. At the incident pump power of 12.8 W, the shortest laser pulse was achieved at a pulse repetition rate of 10 kHz, the resulting pulse width, single pulse energy, and peak power were measured to be 35 ns, 108 μJ, and 3.1 kW, respectively. Received: 18 May 2000 / Published online: 20 September 2000  相似文献   

6.
A compact high power diode-side-pumped Nd:GdVO4 laser has been presented, which can generate an output power of 52 W at 1.063-μm for continuous-wave (CW) operation. The absorption characteristics of the Nd:GdVO4 in different pump directions is measured, which were used to optimize the diode-side-pumped Nd:GdVO4 laser head. The laser characteristics of both CW and Q-switched Nd:GdVO4 and Nd:YAG in are compared and it was found that Nd:GdVO4 may surpass Nd:YAG for high power laser application.  相似文献   

7.
We demonstrate a passively Q-switched Nd:LuVO4 laser at 916 nm by using a Nd, Cr:YAG crystal as the saturable absorber. As we know, it is the first time to realize the laser with a simple linear resonator. When the incident pump power increased from 14.6 W to 23.7 W, the pulse width of the Q-switched laser decreased from 24 ns to 21 ns. The pulse width was insensitive to the incident pump power in the experiment. The average output power of 288 mW with repetition rate of 39 kHz was obtained at an incident pump power of 22.5 W, with the optical-to-optical efficiency and slope efficiency 1.3% and 3.6%, respectively.  相似文献   

8.
A diode end-pumped self Q-switched Cr4+, Nd3+: YAG laser was established with 30-ns pulse width (FWHM) and 0.5-μJ pulse energy output. In normal pulse pumping operation, the lasing threshold changed greatly from 122 mJ to 2.4 mJ as the pump pulse frequency varied from 1 Hz to 500 Hz due to pumping-induced thermal effect. A pre-pumping method was proposed and the change of the lasing threshold was reduced; programmable Q-pulse output with maximum frequency of 16 kHz and high stability was achieved. Received: 16 January 2001 / Revised version: 21 May 2001 / Published online: 19 September 2001  相似文献   

9.
In this work a cavity design for double-pulse generation in Q-switched mode from a single laser is proposed, based on the construction of a second laser channel using a FTIR (frustrated total internal reflection) Q-modulator. A time interval between the two pulses from 500 ns to 120 μs is obtained in a Nd:YAG laser. A comparison with other methods and cavity designs for double-pulse generation is presented. The case when this technique is applied on a tunable laser with metastable upper laser level (Cr:LiCAF, Cr:LiSAF, Alexandrite, Co:MgF2 or other) is also considered. Even though the method presented in the paper does not rely only on the cavity configuration proposed, some advantages can be obtained – both polarization and wavelength-independent tuning without polarization and wavelength restrictions in combination with the possibility of different wavelengths and polarizations in each pulse. Moreover, by using an active medium generating wavelengths around and up to 3 μm, the Pockels-cell-Q-switch optical transmission problems can be avoided. Received: 9 May 2001 / Revised version: 2 August 2001 / Published online: 15 October 2001  相似文献   

10.
We present a high power and efficient operation of the ^4F3/2 → ^4I9/2 transition in Nd:GdVO4 at 912nm. In the cw mode, the maximum output power of 8.6 W is achieved when the incident pump power is 40.3 W, leading to a slope efficiency of 33.3% and an optical-optical efficiency of 21.3%. To the best of our knowledge, this is the highest cw laser power at 912nm obtained with the conventional Nd:GdVO4 crystal. Pulsed operation of 912nm laser has also been realized by inserting a small aeousto-optie (A-O) Q-Switch inside the resonator. As a result, the minimal pulse width of 20ns and the average laser power 1.43 W at the repetition rate of lOkHz are obtained, corresponding to 7.1 kW peak power. We believe that this is the highest laser peak power at 912nm. Furthermore, duration of 65ns has also been acquired when the repetition rate is 100 kHz.  相似文献   

11.
We demonstrate a passively Q-switched Nd:KLu W laser with a semiconductor sat urable absorber mirror (SESAM) at wavelength 1070 nm. At a pump power of 1.3 W, the pulse width is measured to be about 17ns with repetition rate of lOkHz and with the average output power of 260roW. To our knowledge, this is the first demonstration of Nd:KLuW used for passively Q-switched laser with an SESAM.  相似文献   

12.
A new method for improving the efficiency of laser drilling has been developed. Two synchronized free-running laser pulses from a tandem-head Nd:YAG laser are capable of drilling through 1/8-in-thick stainless-steel targets at a stand-off distance of 1 m without gas-assist. The combination of a high-energy laser pulse for melting with a properly tailored high-intensity laser pulse for liquid expulsion results in the efficient drilling of metal targets. We argue that the improvement in drilling is due to the recoil pressure generated by rapid evaporation of the molten material by the second laser pulse. Received: 29 August 2000 / Accepted: 18 December 2000 / Published online: 3 April 2001  相似文献   

13.
We report on a diode-pumped passively mode-locked Nd:Gd0.64Y0.36VO4 laser with a Cr4+:YAG saturable absorber. Q-switched mode locking (QML) with 90% modulation depth was obtained. The peak power of the mode-locked pulse near the maximum of the Q-switched envelope was estimated to be about 1.7 MW at the pump power of 12 W. Besides QML, continuous-wave mode locking was also experimentally realized, for the first time to our knowledge, in the laser under a strong intracavity pulse energy fluence. The mode-locked pulse width is about 2.96 ps at a repetition rate of 161.3 MHz.  相似文献   

14.
We systematically investigate the difference between both actively and passively mode-locked lasers with Gain-at-the-End (GE) and Gain-in-the-Middle (GM) at the example of Nd:YLF lasers. The GE laser generates pulse widths approximately three times shorter than a comparable GM cavity. This is due to enhanced Spatial Hole Burning (SHB) which effectively flattens the saturated gain and allows for a larger lasing bandwidth compared to a GM cavity. We first investigate enhanced SHB by measuring the cw mode spectrum, where we have observed that the mode spacing in GE cavities depends primarily on the crystal length. This was also confirmed for a Nd:LSB crystal, where the pump absorption length was significantly shorter than the crystal length. In mode-locked operation, pulse widths of 4 ps for passive mode locking and 5 ps for active mode locking are demonstrated with GE cavities, compared to 11 ps for passive and 17 ps for active mode locking with GM cavities. Additionally, the time-bandwidth product for the GE cavity is approximately twice the ideal product for a sech2 pulse shape and cannot be improved by dispersion compensation alone, while the GM cavity has nearly ideal time-bandwidth-limited performance. The results for the GM cavity compare well to existing theories taking into account the added effect of pump-power-dependent gain bandwidth which increases the bandwidth of Nd: YLF from 360 to > 500 GHz. In a following paper [1] (called Part II) a rigorous theoretical treatment of the effects due to SHB will be presented.  相似文献   

15.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

16.
This work presents experimental results concerning a passively Q-switching Nd:LuVO4 laser with a Cr4+:YAG saturable absorber operated in a three-element cavity. When the pump power exceeded 5.47 W, the system transfers stable pulse train into spatial-temporal instability. Furthermore, the chaotic pulse train accompanied the generation of a satellite pulse. The experimental results reveal that the mechanisms of instability and generation of the satellite pulse are governed by the multitransverse mode competition.  相似文献   

17.
Influence of spatial mode matching in end-pumped solid state lasers   总被引:1,自引:0,他引:1  
We present investigations on the influence of mode matching on the efficiency of longitudinally pumped solid state lasers. In a theoretical part we enhance an existing model for four level lasers from idealized cylindrical modes to arbitary pump and laser modes in a random relative position thereby neglecting beam deformation due to thermal effects. The theoretical predictions were confirmed experimentally with an end-pumped Nd:YAG rod operated at 1064 nm. To investigate the effect of misalignment on the efficiency we used a Ti-Sapphire pump laser which was displaced relative to the laser beam. To establish the influence of arbitary pump modes on laser performance a diode laser equipped with coupling optics served as pump source for the same resonator. The resulting decrease in slope efficiency compared to the Ti-Sapphire pumped system could be explained in terms of limited mode overlap due to the characteristic pump field distribution produced by the diode coupling optics.  相似文献   

18.
Coherent addition of two injection-locked Nd:YAG lasers has been performed. A maximum output power of 4.4 W and addition efficiency of 0.94 was achieved, which is the highest power-coupling efficiency ever reported. It was shown experimentally that the frequency and intensity noise level of the coherently-added laser are the same as those of a single injection-locked laser. In particular, no additional intensity noise was observed above the relaxation oscillation frequency of the slave laser, which is suitable for use as the light source for a future gravitational wave detector. The frequency noise of the coherently-added laser was suppressed to 1×10-4 Hz/ by controlling that of the master laser, and the intensity noise was also suppressed to 1×10-8 / by controlling the intensity of pump lasers used for the slave lasers. Received: 11 April 2001 / Revised version: 20 June 2001 / Published online: 19 September 2001  相似文献   

19.
We experimentally investigate the antiphase dynamics phenomenon in a self-Q-switched Nd, Cr:YAG laser operating at 946 nm. Due to the effect of spatial hole burning, the Q-switched pulses sequences of one, two and three modes at different pump power are observed. The experimental results show that the pulse sequences display classic antiphase dynamics.  相似文献   

20.
We report a high-effciency Nd:YAG laser operating at 1064 nm and 1319nm, respectively, thermally boosted pumped by an all-solid-state Q-switched Ti:sapphire laser at 885 nm. The maximum outputs of 825.4 m W and 459.4mW, at 1064nm and 1319nm respectively, are obtained in a 8-ram-thick 1.1 at.% Nd:YAG crystal with 2.1 W of incident pump power at 885nm, leading to a high slope efficiency with respect to the absorbed pump power of 68.5% and 42.0%. Comparative results obtained by the traditional pumping at 808nm are presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power at 1064nm under the 885nm pumping are 12.2% higher and 7.3% lower than those of 808rim pumping. At 1319nm, the slope efficiency and the threshold with respect to the absorbed pump power under 885nm pumping are 9.9% higher and 3.5% lower than those of 808 nm pumping. The heat generation operating at 1064 nm and 1319 nm is reduced by 19.8% and 11.1%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号