首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study experimentally investigated the flow boiling heat transfer, pressure drop, and flow pattern in a horizontal square minichannel with a hydraulic diameter of 2.0 mm, and the effects of mass flux, vapor quality, heat flux, and refrigerant properties on the flow boiling characteristics were clarified. The heat transfer coefficient and pressure drop of R32 and R1234yf were measured in a mass flux range of 50–400 kgm−2s−1 at a saturation temperature of 15 °C. The flow pattern of the square minichannel outlet was observed and was classified as plug, wavy, churn, and annular flows. The heat transfer coefficients in the square minichannel were larger than those in the circular minichannel with a similar hydraulic diameter at low mass flux conditions. The heat transfer coefficients of R32 indicated higher values compared with those of R1234yf at same mass flux and qualities. An empirical heat transfer model taking into account the forced convection, nucleate boiling, and thin liquid film evaporation was developed for horizontal square and circular minichannels. The frictional pressure drop of R32 was 1.5–2 times higher than that of R1234yf at same mass flux and vapor quality condition, and the effect of channel shape on the frictional pressure drop was small unlike the boiling heat transfer.  相似文献   

2.
A film boiling heat transfer model is developed for cryogenic chilldown at low mass flux inside a horizontal pipeline. It incorporates the stratified flow structure and is based on conservation principles of mass, momentum, and energy. Simplifying assumptions lead to an expression for the local film boiling heat transfer coefficient which varies with the azimuthal angle. The efficacy of the model is assessed by comparing the predicted wall temperature histories with those measured at several azimuthal positions and various mass fluxes. Good agreement is observed at low flux, G = 13–54 kg/m2 s.  相似文献   

3.
A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.  相似文献   

4.
An experimental investigation of inverted annular film boiling heat transfer has been performed for vertical up-flow in a round tube. The experiments used R-134a coolant and covered a pressure range of 640–2390 kPa (water equivalent range: 4000–14,000 kPa) and a mass flux range of 500–4000 kg m−2 s−1 (water equivalent range: 700–5700 kg m−2 s−1). The inlet qualities of the tests ranged from −0.75 to −0.03. The hot-patch technique was used to obtain the subcooled film boiling measurements. It was found that the heat transfer vs. quality curve can be divided into four different regions, each characterized by a different mechanisms and trends. These regions are dependent on pressure, mass flux and local quality. A detailed examination of the parametric trends of the heat transfer coefficient with respect to mass flux, inlet quality, heat flux and pressure was performed; reasonably good agreement between observed trends and those reported in the literature were noted.  相似文献   

5.
A detailed numerical study has been performed to investigate the combined heat and mass transfer in laminar mixed convection channel flows with uniform wall heat flux. In an initial effort the liquid film on the channel wall is assumed to be extremely thin in thickness. Major dimensionless groups governing the present problem areGr T,Gr Mx,Pr,Sc, φ andRe. Results are specifically presented for an air-water system under various conditions. The effects of wall heating flux, the Reynolds number and the relative humidity of the moist air in the ambient on the momentum, heat and mass transfer in the flow are investigated in great detail.  相似文献   

6.
Absorber is an important component in vapor absorption refrigeration system and its performance has greater influence in overall efficiency of absorption machines. Falling film heat and mass transfer in an absorber is greatly influenced by fluid properties, geometry of heat exchanger and its operating parameters. This paper presents on the results of experimental studies on the heat and mass transfer characteristics of a coiled tube falling film absorber, using 1,1,1,2-Tetrafluroethane(R-134a) and N-N Dimethyl Acetamide (DMAC) as working fluids. The effects of film Reynolds number, inlet solution temperature and cooling water temperature on absorber heat load, over all heat transfer coefficient and mass of refrigerant absorbed are presented and discussed. Normalized solution and coolant temperature profiles and refrigerant mass absorbed along the height of absorber are also observed from the experimental results. The optimum over all heat transfer coefficient for R-134a–DMAC solution found to be 726 W/m2K for a film Reynolds number of 350. The R-134a vapour absorption rate is maximum in the normalized coil height of 0.6 to 1.  相似文献   

7.
A numerical study has been made of convective heat and mass transfer from a falling film to a laminar gas stream between vertical parallel plates. The effects of gas-liquid phase coupling, variable thermophysical properties, and film vaporization have been considered. Simultaneous mass, momentum and heat transfer between liquid film and gas stream is numerically studied by solving the respective governing equations for the liquid film and gas stream together. The influences of the inlet liquid temperature and liquid flowrate on the cooling of liquid film are examined for air-water and air-ethanol systems. Results show that the heat transfer from the gas-liquid interface to the gas stream is predominantly determined by the latent heat transfer connected with film evaporation. Additionally, better liquid film cooling is noticed for the system having a higher inlet liquid temperature or a lower liquid flowrate.  相似文献   

8.
A mathematical model based on the annular flow pattern is developed to simulate the evaporation of refrigerants flowing under varied heat flux in a double tube evaporator. The finite difference form of governing equations of this present model is derived from the conservation of mass, energy and momentum. The experimental set-up is designed and constructed to provide the experimental data for verifying the simulation results. The test section is a 2.5 m long counterflow double tube heat exchanger with a refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tube is made from smooth horizontal copper tubing of 9.53 mm outer diameter and 7.1 mm inner diameter. The agreement of the model with the experimental data is satisfactory. The present model can be used to investigate the axial distributions of the temperature, heat transfer coefficient and pressure drop of various refrigerants. Moreover, the evaporation rate or the other relevant parameters that is difficult to measure in the experiment are predicted and presented here. The results from the present mathematical model show that the saturation pressure and temperature of refrigerant decrease along the tube due to the tube wall friction and the flow acceleration of refrigerant. The liquid heat transfer coefficient increases with the axial length due to reducing the thickness of the liquid refrigerant film. Due to increase of the liquid heat transfer coefficient, increasing wall heat flux is obtained.Finally, the evaporation rate of refrigerant increases with increasing wall heat flux.  相似文献   

9.
A physical and mathematical model has been developed to predict the two-phase flow and heat transfer in a microchannel with evaporative heat transfer. Sample solutions to the model were obtained for both constant wall temperature and constant wall heat flux conditions. Results are provided for evaporation rate, liquid film thickness, liquid and vapor phase pressure and temperature distributions. In addition to the sample calculations that were used to illustrate the transport characteristics, computations based on the current model were performed to generate results for comparisons with the experimental results of Qu and Mudawar (2004) where two different mass flow rates of the working fluid were used in the experiment. The comparisons of total pressure drops with the experimental data of Qu and Mudawar (2004) cover the wall heat flux range of 142.71-240 W/cm2 with a total channel mass flux of 400.1 kg/m2 s and also the wall heat flu range of 99.54-204.39 W/cm2 with total channel mass flux of 401.9 kg/m2 s. The calculated results from the current model match closely with those of Qu and Mudawar (2004).  相似文献   

10.
Condensing of a sugar–water solution is a widely used production process, especially in food industry. In this study, boiling temperature and heat transfer of different concentration levels of sugar/water solution is experimentally studied. In the experiment, the pool boiling with constant temperature difference between surface and boiling temperature is investigated. Boiling point of sugar/water solution depends on sugar mass concentration and on vapor phase pressure. A function is suggested to calculation the boiling temperature. The experimental data and the calculated values of boiling temperature are compared. The results are verified with previous investigations. It is determined that the heat flux between surface and sugar/water solution while pool boiling displays a linear relation with water mass concentration in the solution. Heat transfer coefficient could be determined in dependency of surface temperature and sugar mass concentration. Furthermore a function is suggested to predict the heat flux for engineering purpose, which is already used in similar form for pure substances.  相似文献   

11.
The present experimental study investigates the controlling mechanism involved in a new combined vertical film-type absorber-evaporator exchanger operating near the condition of the triple point of water. This peculiar exchanger plays the most important role in the VFVPE process that can be utilized in many industrial applications, water pollution prevention, desalination, and purification of chemicals, for example. The method of analogy of the heat and mass transfer near the film surface is used to calculate the interfacial concentration and temperature, and thus determining the heat and mass transfer coefficients. It is shown that the working temperature level has the negligible effect on the characteristics of the mass transfer. The mass transfer coefficients are higher than those obtained in the case of isothermal absorption due to the convective effect arisen from vapor absorption in the falling solution film. The water flow rate in the evaporator side has a minor effect on the performance of this combined exchanger. The overall mean heat transfer coefficient remains nearly constant in the lower range of the solution flow rate of the absorber; however, it would increase with increasing solution flow rate in the higher range. The correlating equations for both the heat and mass transfer coefficients are suggested.  相似文献   

12.
Experiments were carried out to study the airflow and heat transfer through continuous vertical roof openings of a naturally ventilated greenhouse. The major goals of this work were to investigate the effect of ambient wind speed and direction with respect to the greenhouse on the mean and turbulent characteristics of the air velocity and heat transfer through openings with and without insect-proof screens. Air velocity and temperature were measured simultaneously at two edges of the opening using one-dimensional sonic anemometers and miniature thermocouples. It is shown that when the wind is not perpendicular to the plane of the openings there are outflow and inflow, at the windward and leeward edges of the openings respectively. A wind blowing from the back of the openings and nearly perpendicular to them reduced the mean air velocity at the two edges but did not change the turbulent velocity much. Over a considerable part of the day the mean and turbulent air velocities scale with the ambient wind; the total heat flux (mean plus turbulent) scales with the product of the ambient wind and temperature while the turbulent heat flux does not. The integral length scale of the inflow was approximately equal to the height of the opening and was larger than that of the outflow. Installing screens on the openings generated smaller scales and increased the spectral decay rate in comparison with openings without screens. A quadrant analysis enabled the determination of the events that significantly contribute to the turbulent heat flux. It is shown that at the outflow the turbulent heat flux is mainly due to eddies of cool air entering from the surrounding to the greenhouse while at the inflow it is due to both warm and cool eddies leaving and entering the greenhouse respectively.  相似文献   

13.
The condensation heat transfer of pure refrigerants, R-22, R-134a and a binary refrigerant R-410A flowing in small diameter tubes was investigated experimentally. The condenser is a countflow heat exchanger which refrigerant flows in the inner tube and cooling water flows in the annulus. The heat exchanger is smooth, horizontal copper tube of 1.77, 3.36 and 5.35 mm inner diameter, respectively. The length of heat exchanger is 1220, 2660 and 3620 mm, respectively. The experiments were conducted at mass flux of 200–400 kg/m2 s and saturation temperature of 40°C. The main results were summarized as follows: in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski and Wu and Little correlation. The new single-phase correlation based on the experimental data was proposed in this study. In case of two-phase flow, the condensation heat transfer coefficient of R-410A for three tubes was slightly higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. The condensation heat transfer coefficient for R-22, R-134a and R-410A increased with increasing mass flux and decreasing tube diameter. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensation heat transfer. Therefore, the new condensation heat transfer correlation based on the experimental data was proposed in the present study.  相似文献   

14.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

15.
In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m?2 s?1. The condensing temperatures are between 40 and 50 °C; heat fluxes are between 12.65 and 66.61 kW m?2. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions.  相似文献   

16.
This paper has concerned preventing snow accumulating upon inclined substrates using falling water film. A cluster of physical models for a gas–water–snow system was developed and solved with a control-volume finite-difference procedure. The effects of various parameters on heat transfer and water film temperature decrease were investigated. The results revealed that it is feasible to use falling water film to prevent snow accumulation upon inclined substrates as long as the suitable initial film flow rate and temperature are adopted. It was clarified that among the influential factors of water film temperature decrease, the snowfall intensity, initial water film thickness and the substrate inclination play an important role. The intensity of the film temperature decrease mainly depends on the snowfall intensity and the initial heat capacity of the water film flow, which is a function of temperature and mass flow rate. An intensive heat transfer occurs in a very thin layer near the free surface of the water film. The numerical results were correlated in terms of effective Nusselt number, and Reynolds, Prandtl and Gukhman numbers. The maximum deviation of the numerical data from the correlation is approximately 15.6%, which only causes an uncertainty less than 3% in the simple prediction. Received on 26 April 1999  相似文献   

17.
In consideration of droplet–film impaction, film formation, film motion, bubble boiling (both wall nucleation bubbles and secondary nucleation bubbles), droplet–bubble interaction, bulk air convection and radiation, a model to predict the heat and mass transfer in spray cooling was presented in this paper. The droplet–film impaction was modeled based on an empirical correlation related with droplet Weber number. The film formation, film motion, bubble growth, and bubble motion were modeled based on dynamics fundamentals. The model was validated by the experimental results provided in this paper, and a favorable comparison was demonstrated with a deviation below 10%. The film thickness, film velocity, and non-uniform surface temperature distribution were obtained numerically, and then analyzed. A parameters sensitivity analysis was made to obtain the influence of spray angle, surface heat flux density, and spray flow rate on the surface temperature distribution, respectively. It can be concluded that the heat transfer induced by droplet–film impaction and film-surface convection is dominant in spray cooling under conditions that the heated surface is not superheated. However, the effect of boiling bubbles increases rapidly while the heated surface becomes superheated.  相似文献   

18.
An experimental study was carried out to investigate condensation heat transfer and pressure drop characteristics of R-134a in a coiled double tube oriented with its helix axis in the vertical direction. Measurements were obtained at inlet pressure of 815 kPa for refrigerant mass flux ranging from 95 to 710 kg/m2s and cooling water Reynolds number varying from 1000 to 14000. Presented results illustrate the effects of refrigerant mass flux and average condensation temperature difference on the condensation heat transfer coefficient and pressure drop. Comparison with relevant data from other sources indicates a reasonable agreement. An empirical correlation was obtained for predicting condensation heat transfer coefficient. The present study may be considered of a practical and theoretical interest for the design of the helical double-tube condensers using R-134a as the working fluid. M. El-Sayed Mosaad is on leave from Mechanical Engineering Department, Mansoura University, Egypt.  相似文献   

19.
This paper presents the heat transfer coefficients and the pressure drop measured during HFC-410A condensation inside a commercial brazed plate heat exchanger: the effects of saturation temperature, refrigerant mass flux and vapour super-heating are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature and great sensitivity to refrigerant mass flux and vapour super-heating. At low refrigerant mass flux (<20 kg/m2 s) the saturated vapour condensation heat transfer coefficients are not dependent on mass flux and are well predicted by Nusselt [W. Nusselt, Die oberflachenkondensation des wasserdampfes, Energy 60 (1916) 541–546, 569–575] analysis for vertical surface: the condensation process is gravity controlled. For higher refrigerant mass flux (>20 kg/m2s) the saturated vapour condensation heat transfer coefficients depend on mass flux and are well predicted by Akers et al. [W.W. Akers, H.A. Deans, O.K. Crosser, Condensing heat transfer within horizontal tubes, Chem. Eng. Prog. Symp. Series 55 (1959) 171–176] equation: forced convection condensation occurs. In the forced convection condensation region the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by Webb [R.L. Webb, Convective condensation of superheated vapor, ASME J. Heat Transfer 120 (1998) 418–421] model. A simple linear equation based on the kinetic energy per unit volume of the refrigerant flow is proposed for the computation of the frictional pressure drop.  相似文献   

20.
This paper presents flow visualisation experiments for a novel film-cooling hole, the converging slot-hole or console for short. Previously published experimental results have demonstrated that the console improved both the heat transfer and the aerodynamic performance of turbine vane and rotor blade cooling systems. Flow visualisation data for a row of consoles were compared with that of cylindrical and fan-shaped holes and a slot at the same inclination angle of 35° to the surface, on a large-scale, flat-plate model at engine-representative Reynolds numbers in a low speed tunnel with ambient temperature mainstream flow. In the first set of experiments, the flow was visualised by using a fine nylon mesh covered with thermochromic liquid crystals, allowing the measurement of gas temperature contours in planes perpendicular to the flow. This data demonstrated that the console film was similar to a slot film, and remained thin and attached to the surface for the coolant-to-mainstream momentum flux ratios of 1.1 to 40 and for a case with no crossflow (infinite momentum flux ratio). A second set of flow visualisation experiments using water/dry-ice fog have confirmed these results and have shown that the flow through all coolant geometries is unsteady.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号