首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have conducted spectroscopic studies of the welding plasma formed in the process of welding with an ytterbium fiber laser delivering output power of up to 20 kW. The influence of shielding gases (Ar, He) on different parts of the welding plume is investigated. The absorption coefficient of the laser radiation by the welding-plume plasma is estimated. Scattering of 532-nm probe radiation from particles of the condensed metal vapor within the caustic of a high-power fiber laser beam is measured. Based on the obtained results, conclusions are made on the influence of the plasma formation and metal vapor condensation on the radiation of the high-power fiber laser and the stability of the welding process.  相似文献   

2.
在激光+脉冲GMAW复合焊接过程中,焊丝端部金属熔化产生大量的金属蒸汽,导致等离子体中电子、粒子的扩散现象加剧,使得激光的传输模式和工件对激光能量的吸收率和吸收模式发生变化。基于光谱分析的方法得到了复合焊接峰值状态的电子密度和温度分布,通过高速摄影分析了不同焊接模式下等离子体形态的变化,结合Beer-Lambert吸收定律计算了不同焊接模式下激光的吸收率。结果表明,在复合焊过程中,由于焊丝端部金属被熔化,焊丝的金属蒸汽进入激光等离子体内部,导致激光匙孔上方电子密度进一步提高,等离子体吸收激光能量能力增强,使得激光的传输效率从纯激光焊的94.16%降低到了CO_2激光+脉冲GMAW复合焊的85.84%。  相似文献   

3.
高向东  汪润林  龙观富  Katayama Seiji 《物理学报》2012,61(14):148103-148103
对于大功率盘型激光焊,金属焊件表面在激光束辐射下强烈汽化并形成等离子体状的金属蒸汽羽状物. 该金属蒸汽羽状物可逆向激光束传输,对激光有明显的屏蔽作用, 降低激光辐射至焊件的能量密度,影响焊接效率和质量. 因此研究金属蒸汽特征变化规律及其与焊接质量之间的关联 ,可实现由金属蒸汽特征实时监测激光焊接状态. 以10 kW大功率盘型连续激光焊接304不锈钢钢板为试验对象, 应用高速摄像机摄取金属蒸汽动态图像,将其转换至色调-色饱和度-亮度空间, 提取金属蒸汽面积、激光束受影响路径长度等相关特征量, 以焊缝熔宽的变化作为衡量焊接状态稳定性的参数. 通过金属蒸汽特征值的均值统计和方差分析,试验证明根据金属蒸汽面积和激光束受影响路径长度等金属蒸汽特征可有效地反映熔宽质量, 从而对焊接状况做出动态评估.  相似文献   

4.
When the output from a high power Nd:YAG laser irradiates a metallic surface, metal vapor is generated and changes into the plasma state, which is called a laser-induced plasma plume. If the high power laser is combined with an arc plasma, they mutually attract and influence each other. In this study, several analytic steps are introduced to analyze the laser-arc hybrid welding plasma. A conduction equation is first solved to obtain the temperature distribution on the metallic surface. Next, an analysis of the metal vapor is conducted to investigate the Ar–Fe mixture using a numerical method. As a result of the analysis, it is revealed that the plasma is concentrated in the vicinity of the laser-irradiation position and that the local temperature of the plasma is increased. Plasma flow and current density profiles are also affected by the laser irradiation.  相似文献   

5.
A sandwich method was used to observe the keyhole in deep penetration laser welding, which provided an effective way to analyze both the Fresnel and inverse Bremsstrahlung absorption. In the transparent metal-analog system, different densities of metal vapor, ionized atoms, and free electrons in the keyhole can be simulated by changing the thickness of aluminum films. The research results show that inverse Bremsstrahlung absorption exerts a tremendous influence on the energy absorption of the laser beam for CO2 laser welding. Low density of keyhole plasma benefits the incident laser energy coupling to the materials. However, excess density of keyhole plasma baffles the transmission of the incident laser beam to the interior material. By comparing inflow energy and outflow energy, there exits an energy balance on the keyhole wall by balancing the absorbed laser intensity and heat flux on the wall.  相似文献   

6.
激光感生等离子体特性的三维数值模拟   总被引:1,自引:0,他引:1  
在激光焊接过程中,作用于金属工件表面的高强度激光会引起材料的强烈蒸发,金属蒸汽与入射激光相互怍用,又会引起金属蒸汽部分电离,形成激光感生等离子体。本文采用三维模拟方法,考虑保护气和侧吹气的影响,对激光感生等离子体中的温度与速度分布进行了研究。  相似文献   

7.
光纤布拉格光栅及其应用   总被引:11,自引:0,他引:11  
近年来新型的紫外激光写入的光纤布拉格光栅元件(FBG)以其具有直接写人光纤芯区、插入损耗小、易于全光集成及波长选择性好、传感信息对波长绝对编码等优点,成为国内外光纤技术领域的研究热点。该论文综述了FBG制作技术的进展,介绍和比较了各种制作方法的优缺点,对FBG在光纤通讯、光纤传感器等方面的应用前景进行了分析和说明,结果表明FBG将对整个光纤技术领域产生重要的影响。  相似文献   

8.
To address the problem of the zinc being easily gasified in laser welding of galvanized steel, laser welding of a zinc “sandwich” sample was performed to experimentally investigate the behavior and characteristics of the zinc inside and outside the keyhole, including the observation of the keyhole, the zinc vapor and zinc plasma, and the calculation of the electron temperature of the zinc plasma. Based on the principle of imaging amplification, the detected multi-points can be located precisely in order to study the distribution of the electron temperature of the zinc plasma. The results show that the zinc behavior played an important role in the formation of the weld-joint and the zinc plasma altered the energy distribution at the top of the keyhole whose diameter has been enlarged in the welding process. For both continuous-wave laser and pulsed laser welding of zinc “sandwich” sample, the average electron temperature of the zinc keyhole plasma was higher than that of the zinc plasma plume outside the keyhole. In the welding process, the continuous wave laser with higher input energy results in higher position of the zinc plasma with higher electron temperature above the sample surface. More zinc vapor resulted in a higher average electron temperature of the plasma.  相似文献   

9.
The effect of coatings, which are formed with laser cladding and plasma spray welding on 1Cr18Ni9Ti base metal, on wear resistance is studied, A 5-kW transverse flowing CO2 laser is used for cladding Co base alloy powder pre-placed on the substrate. Comparing with the plasma spray coatings, the spoiled rate of products with laser clad layers was lower and the rate of finished products was higher. Their microstructure is extremely fine. They have close texture and small size grain. Their dilution resulting from the compositions of the base metal and thermal effect on base metal are less. The hardness, toughness,and strength of the laser cladding layers are higher. Wear tests show that the laser layers have higher properties of anti-friction, anti-scour and high-temperature sliding strike. The wear resistance of laser clad layers are about one time higher than that of plasma spray welding layer.  相似文献   

10.
樊丁  黄自成  黄健康  王新鑫  黄勇 《物理学报》2015,64(10):108102-108102
基于局域热平衡状态假设并考虑金属蒸汽的作用, 建立了钨极惰性气体保护焊电弧与熔池交互作用的三维数学模型. 电弧等离子体的热力学参数和输运系数由温度和金属蒸汽浓度共同决定, 并使用第二黏度近似简化处理金属蒸汽在氩等离子中的输运过程. 在考虑熔池流动时, 主要考虑了浮力、电磁力、表面张力和等离子流拉力的作用. 通过对麦克斯韦方程组、连续性方程、动量守恒方程、能量守恒方程和组分输运方程的耦合求解, 得到了金属蒸汽在电弧中的空间分布、电弧和熔池的温度场、速度场和电流密度分布等重要结果. 通过与未考虑金属蒸汽的结果对比, 研究了熔池上表面产生的金属蒸汽对电弧等离子体行为的影响, 以及电弧等离子对熔池行为的影响. 结果表明, 金属蒸汽主要富集在熔池上表面附近; 金属蒸汽对电弧等离子体有明显的收缩作用, 而对等离子速度和电势影响较小; 金属蒸汽的出现对熔池上表面速度分布和剪切力分布以及熔池形貌并无明显影响. 求解结果与已有的实验结果和计算结果符合良好.  相似文献   

11.
不锈钢表面激光熔覆层与喷焊层耐磨性对比研究   总被引:4,自引:0,他引:4  
本文研究在1Cr18Ni9Ti基体上采用激光熔覆和离子喷焊二种工艺形成的涂层对耐磨性的影响。使用5kW横流CO2激光器对预置在基体上的Co基自熔合金粉末进行单道或多道扫描,得到的熔层与等离子焊层对比结果是:激光熔层缺陷率低,成品率高,其结构致密均匀,晶粒细小,成分稀释率更小,对基体热影响小,熔层硬度与强韧性更高。性能试验证明:激光熔层具有更高的抗擦伤磨损和抗冲击滑动高温磨损性能,耐磨性提高了一倍左右。  相似文献   

12.
Low-power laser/arc hybrid welding process of magnesium alloy shows that the weld capability of tungsten-inert-gas arc is improved under the action of laser pulses. The effect of laser pulse on arc plasma is analyzed by studying the plasma spectra, plasma shapes, and arc voltage in this paper. On the one hand, laser pulse attracts arc plasma to laser keyhole and improves the stability of arc plasma; on the other hand, laser pulse expands the arc plasma and concentrates the electric conducting route of arc plasma. All these increase the output power and energy density of arc plasma, so the welding penetration is improved. In addition, laser pulses are controlled to act on the negative wave of alternating-current arc (the target metal has negative polarity) in hybrid welding process to improve the stability of arc plasma and weld penetration.   相似文献   

13.
This paper describes an investigation on differences in interactions between laser and arc plasma during laser-gas tungsten arc (LT) welding and laser-gas metal arc (LM) welding. The characteristics of LT heat source and LM heat source, such as plasma behavior, heat penetration ability and spectral information were comparably studied. Based on the plasma discharge theory, the interactions during plasma discharge were modeled and analyzed. Results show that in both LT and LM welding, coupling discharge between the laser keyhole plasma and arc happens, which strongly enhance the arc. But, the enhancing effect in LT welding is much more sensitive than that in LM welding when parameters are adjusted.  相似文献   

14.
Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.  相似文献   

15.
万瓦级光纤激光焊接过程中小孔内外等离子体研究   总被引:3,自引:0,他引:3       下载免费PDF全文
李时春  陈根余  周聪  陈晓锋  周宇 《物理学报》2014,63(10):104212-104212
为了进一步深入了解超高功率光纤激光深熔焊接过程中等离子体特征,试验拍摄了深熔小孔内外等离子体形态,并采用光谱仪检测分析了光纤激光致等离子体光谱信号.利用检测得到的等离子体光谱信号,计算研究了等离子体的电子温度、电子密度、电离度以及等离子体压力特征,并分析了在小孔内不同深度处及孔外等离子体的变化规律.结果表明,孔内等离子体呈现不均匀分布特征,孔外金属蒸气远多于等离子体.等离子体光谱分析显示,光纤激光致等离子体辐射出的谱线较少,即电离程度较低.进一步的计算结果同样证实了光纤激光致等离子体处于弱电离状态,但等离子体电子密度仍然处于较高水平,且等离子体瞬态压力可达到数百个大气压.  相似文献   

16.
The plasma plume induced during laser welding of metals is a mixture of metal vapour, coming from the vaporised weld pool surface and shielding gas. The influence of the shielding gas on the welded joints quality is not yet well understood and very few investigations, to the best of our knowledge, were addressed to study its role in case of welding of aluminium–magnesium alloys. In this paper we present a study of the dynamics of plasma plume produced in laser welding of 5xxx aluminium alloys by means of correlation spectroscopy. By our results we can correlate the influence of the welding speed, in case of ineffective gas shielding, to the loss of alloying elements. Finally, the results obtained are consistent with the EDX analysis performed in post-processing on the welded joints.  相似文献   

17.
熔透检测是实现高功率激光焊接质量在线控制的重要环节,但由于介观尺度下的低辐值熔透特征信号产生于激光匙孔底部被匙孔喷射物质和周围干扰信号完全掩盖,熔透状态难以被直接获取,常规检测多以间接测量为主。将光谱透视技术、红外显微成像技术、光电传感技术及空间定位提取技术相结合,提出一种激光焊接熔透特征信号同轴增效提取方法。以高功率激光在匙孔内壁激发的荧光辐射源作为直接检测信号,利用不同发光体的谱段特性在红外谱段有效分离并抑制激光焊接匙孔上方的等离子体、金属蒸汽焰、粒子团簇等强干扰信号,使红外荧光信号得到有效增强,实现光谱透视显像效果。同时采用自行研制的激光焊接同轴显微光路系统,利用红外显微成像原理提取到匙孔内壁受激辐射荧光的红外显微实像。并以此为基础对高功率激光焊接熔透状态与匙孔内部影像特征进行关联研究,发现与熔透状态直接相关的低辐射值特征现象及特征区域的存在。通过视觉辅助定位调节和熔透特征位置试验矫正等寻位方式,依次提高定位精度,直至将传感器光电感应芯片高精度定位至荧光辐射实像中的熔透特征区域。由此通过光谱透视-显微成像-介观寻位萃取的逐层光学分离方式,实现了对匙孔熔透特征数据的精准提取和最大化增强。试验结果表明,基于多种光谱及光学处理技术复合应用的大功率固体激光焊熔透特征同轴增效提取方法对激光熔透特征信号增强效果显著,可作为一种新型的高功率激光焊接熔透在线检测手段。  相似文献   

18.
The physical process of deep penetration laser welding involves complex, self-consistent multiphase keyhole, metallic vapor plume, and weld pool dynamics. Currently, efforts are still needed to understand these multiphase dynamics. In this paper, a novel 3D transient multiphase model capable of describing a self-consistent keyhole, metallic vapor plume in the keyhole, and weld pool dynamics in deep penetration fiber laser welding is proposed. Major physical factors of the welding process, such as recoil pressure, surface tension, Marangoni shear stress, Fresnel absorptions mechanisms, heat transfer, and fluid flow in weld pool, keyhole free surface evolutions and solid–liquid–vapor three phase transformations are coupling considered. The effect of ambient pressure in laser welding is rigorously treated using an improved recoil pressure model. The predicated weld bead dimensions, transient keyhole instability, weld pool dynamics, and vapor plume dynamics are compared with experimental and literature results, and good agreements are obtained. The predicted results are investigated by not considering the effects of the ambient pressure. It is found that by not considering the effects of ambient pressure, the average keyhole wall temperature is underestimated about 500 K; besides, the average speed of metallic vapor will be significantly overestimated. The ambient pressure is an essential physical factor for a comprehensive understanding the dynamics of deep penetration laser welding.  相似文献   

19.
High-speed holographic interferometry was applied to the experimental study of a laser-induced plasma plume in pulsed laser welding. We adopted two kinds of holographic interferometers for visualizing and imaging the refractive index distribution of the plume and vaporized metal; a real-time holographic interferometer with a high-speed camera and a double-pulsed holographic interferometer with a dual-reference-beam module. The high-speed photographs of the weld plume were compared with the visualized images by holographic interferometer. The experimental results show the process of generation and propagation of the laser-induced plume and give the feasibility of quantitative measurement of the density distribution of the laser-induced plume and vaporized metal in laser welding.  相似文献   

20.
To obtain on-line information about the cutting and welding processes, optical sensors are integrated into the working head of a high-power CO2 laser machining system. In order to detect the dynamic light or plasma intensity fluctuation during cutting and welding, these sensors provide the real-time signal of the metal vapour and plasma flame intensity in the wavelength range 200–1100nm. Simultaneously, the real-time intensity of the laser power is measured with a pyroelectric sensor. The aim is to analyse the transfer function of each process. With the knowledge of the transformation characteristics of the specific process, a closed-loop control is set up. Distinguishing between CW and pulsed processes, different control algorithms have been developed and tested. A control system based on microcontroller hardware and its theoretical background for failure detection are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号