首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental data on the enrichment of H2O nuclear spin isomers by means of adsorption, as suggested in several works by other authors, are reported. We were unable to observe any enrichment of isomers. The conclusion was drawn that the adsorption characteristics of water ortho and para isomers were insignificantly different. An analysis of the relaxation of H2O spin isomers induced by the intramolecular mixing of the molecular ortho and para spin states and caused by collisions with paramagnetic oxygen molecules was performed.  相似文献   

2.
A spin mechanism for electron transfer control in the reaction center of purple bacteria in photosynthesis is proposed. Rotation and conversion of the ortho/para spin isomers of two H2O molecules located near the special pair of the reaction center are treated as the sources of the coherent modulations of transient kinetics. Modulation of the collective wave function of the reaction center electrons by the total proton spin of ortho H2O is a key feature allowing the molecule to play the role of a gate controlling the electron transfer. The iron atom in the reaction center with the gradient magnetic field is treated as a catalyst removing the strict forbiddenness of H2O ortho/para conversion. It is shown that the modulation of the reaction center stimulated emission kinetics observed in the field of femtosecond pulses coincides with the rotational transitions of ortho/para H2O. Influence of the effect of the electric field (Stark effect) on the level displacement and ortho/para conversion rate is discussed.  相似文献   

3.
Rotational resonances of ortho and para spin isomers of the H2O molecule are observed in hexagonal ice using four-photon spectroscopy of coherent light scattering. It is experimentally shown that the resonant contribution to the four-photon scattering signal from para H2O spin isomers in ice is about half as large as that in the liquid phase.  相似文献   

4.
A mechanism is proposed for the previously observed [1] jump in erythrocyte fluidity through a microcapillary 1.3 μm in diameter at a temperature of 36.6±0.3°C. Our interpretation is based on the experimental evidence both for existence of ortho and para H2O isomers in water and on spin-selective interaction of proteins with para H2O isomers as hydration shells of biomolecules are being formed [2]. It is important that the formation of hydration shells of proteins and DNA in aqueous solutions is accompanied by an increase in the Brillouin shift to 0.4 cm1 (≃0.25 cm−1 in water), which points to the formation of icelike structures. We believe that the coincidence of the translational energy kT of the Brownian motion and the energy of the rotational quanta for the 313–202 transition of para H2O isomers at the temperature 36.6°C increases the probability for excitation of para H2O isomers in collisions. Collisions mix quantum states of closely spaced levels in para H2O (313, 285.2 cm−1) and ortho H2O (330, 285.4 cm−1) and induce conversion of para isomers to ortho H2O. It is assumed that this conversion in the icelike hydration shell of hemoglobin (Hb) is accelerated under the catalyzing effect of oxygen and iron present in Hb and triggers a chain reaction: release of ortho H2O isomers through the erythrocyte membrane→compaction of Hb molecules and increase in concentration of catalysts→acceleration of conversion→structural gel-sol transition. It is the sequence of these processes that provides a jump in fluidity of erythrocytes through a microcapillary and the anomalous increase in fluidity of the aqueous solution of hemoglobin by almost an order of magnitude at temperatures close to 36.6°C and an increase in the solution concentration by a factor of 1.7.  相似文献   

5.
Four-photon polarization spectra of double distilled water subjected to a special treatment in a cavitation chamber and 20% aqueous solution of hydrogen peroxide were recorded in the range ±8 cm−1. All recorded spectra contain narrow (< 0.3 cm−1) resonances corresponding to the frequencies of the rotational spectrum of ortho and para spin isomers of the H2O molecule. Numerical simulation of the spectra obtained made it possible to quantitatively estimate the contribution of the rotational spectrum to the coherent scattering signal. It was found that the contribution of the para spin isomer of the H2O molecule to the rotational line spectrum decreases in an aqueous solution of the α-chymotrypsin protein. Apparently, this decrease indicates the selectivity of interaction of biopolymer molecules with different spin isomers.  相似文献   

6.
Violation of the normal spin 3: 1 ortho/para ratio in saturated water vapor above a 0.5% water-glycerol solution was detected using the BWO spectroscopy method. The solution was prepared by pumping the initial solution out at room temperature. The effect is supposed to be due to increased fugacity of ortho water molecules from the solution and the corresponding para enrichment of residual water.  相似文献   

7.
The experiment on water molecule adsorption on the surface of nanoporous polymeric adsorbent in the Knudsenmode under conditions of selective action of IR radiation is described. Resonant excitation of the vibrational-rotational transition of the ortho-modification of H2O molecules at a wavelength of 1.85 µm is used. The applicability of this method to the production of water vapor with nonequilibrium concentration ratios of ortho and para modifications of water molecules is shown.  相似文献   

8.
A hypothesis of the quantum nature of the specific temperatures T s of water and ice, whose values is not random, was formulated. It was found that the quantum energy hΩ mn of closely located rotational transitions in the ortho and para spin isomers of H2O molecules coincides with the translation energy kT near the well-known specific temperatures T s in ice and water. On the basis of this fact it was suggested that ortho-para conversion occurs at temperatures close to T s upon inelastic collisions and resonance energy exchange kT shΩ mn in the rotation-translation-rotation (RTR) processes. Such conversion can induce rearrangement of the H-bond set structure and repacking of H2O molecules. The coincidence kT shΩ mn was checked for ice and water at 12 known T s, as well as for heavy water D2O near T s = 11.2°C (maximum density) and −140°C (glassy transition). The previously observe strong deformation of the OH Raman band near T s = 4, 19, 36, and 76°C (maximum density, maximum surface tension, minimum heat capacity, and maximum speed of sound, respectively) was interpreted as a manifestation of the water structure rearrangement induced by H2O ortho-para conversion.  相似文献   

9.
We have investigated by means of electron spin resonance (ESR) spectroscopy using two spin labels, Iodoacetamido-proxyl and 3-Maleimido-proxyl, the dynamics of two different regious around the active site of azurin, a copper containing blue protein. The ESR measurements of spin labeled azurin have been carried out in the 110–300 K temperature range on wet (H2O, D2O and ethanol/water mixtures) and lyophilized samples. The behaviours of the outer hyperfine splitting separation, 2A zz , of the ESR spectravs temperature of the lyophilized, and fully hydrated azurin in H2O and D2O suggest that the two spin labels are located in regions of the protein surface with different dynamics and polarity. Moreover, all differences in the 2A zz values shown by the spin labeled azurin in normal and heavy water as well as the temperature behaviour disappear when azurin is in ethanol/water mixtures. The results are discussed in terms of a close correlation between the molecular dynamics of the protein fragments to which the two spin labels are bound and the properties of the solvent used.  相似文献   

10.
We compare the cross sections for the transitions changing the projection of the total angular momentum of N2 +(2Σ) in collisions with 3He and 4He at very low collision energy. The fundamental states of the two nuclear spin isomers of N2 + are considered as well as the two fine structure levels of the first excited para level N=2. It is shown that the two fundamental states of the two nuclear spin isomers behave differently. For the fundamental para level N=0 of N2 +, the projection changing cross section is always negligible compared to the elastic one for both He isotopes. For the fundamental ortho level N=1 of N2 +, the spin-rotation interaction couples the different spin levels directly so the spin relaxation becomes a first order process. The associated resonances increase the projection changing cross section which remains smaller but becomes comparable with the elastic one. This is in contrast with the excited rotational levels of N2 +, which for the rotational deactivation and elastic channels are found to be equal around the resonances for the collisions involving 3He. These two channels are always larger than the projection changing one. We also find that, for transitions involving the fundamental rotational state, the domain of validity of the threshold laws discussed by Krems and Dalgarno [Phys. Rev. A 67, 050704 (2003)] for a potential decreasing faster than 1/r2 is shortened, due to the long range charge induced dipole potential. This effect is illustrated for the collisions of 3He with the fundamental para state of N2 +.  相似文献   

11.
Experiments have been performed on the viscosity change of para and normal H2, and ortho and normal D2, under the influence of a magnetic field. This viscomagnetic effect is investigated as a function of the temperature between 140 K and room temperature. The data of this work are expressed in terms of effective cross sections for several elastic and inelastic collision processes. A comparison is made with results for HD, as obtained by Burgmans.  相似文献   

12.
Chapovsky  P. L.  Mamrashev  A. A. 《JETP Letters》2020,111(2):85-89

A theoretical model proposed for nuclear spin isomers of H2O molecules located inside the C60 fullerene explains an anomalously high stability of ortho-H2O isomers detected in the experiments reported in [B. Meier et al., Nature Commun. 6, 8112 (2015)] at a temperature of T = 5 K.

  相似文献   

13.
The physical principles of laser spectral analysis of the relative content of ortho- and para-water molecules, which is aimed at studying the spin-selective processes in gaseous media, are considered. An analyzer of the content of water spin isomers is described. It is based on a tunable diode laser and implies high-precision measurement of the near-IR absorption in vibrational-rotational lines of the H2O molecule. The efficiency of the diagnostic method developed is demonstrated in the diagnostics of spin-selective adsorption in nanoporous polymer sorbents. There was confirmed the existence of the effects of spin-selective adsorption of ortho- and para-water molecules, which had been previously observed by only submillimeter spectroscopy.  相似文献   

14.
EPR spectra of Gd3+-doped Ce2(SO4)3.8H2O and La2(SO4)3.9H2O single crystals have been measured with an X-band spectrometer at room and low temperatures. The absolute signs of spin Hamiltonian parameters have been determined for the La2(SO4)3.9H2O host from intensities of lines at liquid helium temperature; for the Ce2(SO4).8H2O host the lines broaden considerably below 60 K, not permitting the determination of absolute signs of spin Hamiltonian parameters. The data are analysed using a rigourous least-squares procedure, fitting simultaneously all lines obtained for several orientations of the external magnetic field. The zero-field splittings have been computed for both the hosts. The characteristics of EPR spectra of Gd3+ in these hosts are compared with those obtained in other rare-earth trisulphate octahydrate hosts.  相似文献   

15.
Quasiperiodic sequences of the maxima of microwave absorption with decreasing amplitudes have been observed in a temperature range of 4–50 K in the electron spin resonance spectra of ferrimagnetic chiral single crystals [Mn{(R/S)-pn}]2[Mn{(R/S)-pn}2(H2O)][Cr(CN)6]2, as well as [Cr(CN)6][Mn(S)-pnH-(H2O)]H2O. Theoretical estimates and previous experimental data indicate that the Dzyaloshinskii-Moriya interaction is the main factor determining the chirality of the spin density and the existence of soliton solutions for the spin dynamics in these crystals. The experimental dependences obtained for the distances between the microwave power absorption maxima on the constant component of the magnetic field of the spectrometer correspond to the theoretical predictions for spin solitons in three-dimensional magnetic materials and exhibit another behavior in crystals with quasi-two-dimensional magnetic ordering.  相似文献   

16.
Broadening and shifting of the 211-202 transition of H216O, H217O, H218O by pressure of water, nitrogen and oxygen were precisely measured at room temperature using spectrometer with radio-acoustic detection of absorption. Shift parameters for all studied lines as well as broadening parameters of H217O, H218O lines were measured for the first time. Comparison of obtained results with previously known experimental and theoretical data is presented.  相似文献   

17.
17O-NMR spectra, of ortho, meta and para substituted nitrobenzene are reported. The 17O nucleus of NO2 group in ortho derivatives absorb at lower field that meta and para compounds. Moreover, width line of 17O resonance appears to be strongly dependent by substituent position. The 17O chemical shifts are correlated with U. V. spectra and X-ray diffraction data.  相似文献   

18.
We developed a modern methodology to retrieve water (H2O) and deuterated water (HDO) in planetary and cometary atmospheres, and constructed an accurate spectral database that combines theoretical and empirical results. On the basis of a greatly expanded set of spectroscopic parameters, we built a full non-resonance cascade fluorescence model and computed fluorescence efficiencies for H2O (500 million lines) and HDO (700 million lines). The new line list was also integrated into an advanced terrestrial radiative transfer code (LBLRTM) and adapted to the CO2 rich atmosphere of Mars, for which we adopted the complex Robert–Bonamy formalism for line shapes. We retrieved water and D/H in the atmospheres of Mars, comet C/2007 W1 (Boattini), and Earth by applying the new formalism to spectra obtained with the high-resolution spectrograph NIRSPEC/Keck II atop Mauna Kea (Hawaii). The new model accurately describes the complex morphology of the water bands and greatly increases the accuracy of the retrieved abundances (and the D/H ratio in water) with respect to previously available models. The new model provides improved agreement of predicted and measured intensities for many H2O lines already identified in comets, and it identifies several unassigned cometary emission lines as new emission lines of H2O. The improved spectral accuracy permits retrieval of more accurate rotational temperatures and production rates for cometary water.  相似文献   

19.
An experimental method for testing alternative hypotheses about the origin of the NMR signal in liquid water, i.e., whether it is generated by (a) protons 1H with spin 1/2 of H2O molecules or (b) orthomolecules with spin 1, containing parallel spins and constituting three-quarters of the total number of H2O molecules, is proposed.  相似文献   

20.
Starting with H+[CH3C(O)CH2C(O)CH3] (denoted H+PD), the protonated diketone-water clusters H+PD(H2O) n (n = 1–3) have been characterized by density functional theory calculations in combination with vibrational predissociation spectroscopy to explore the conformational changes of a protonated bifunctional ion solvated by water in the gas phase. Theoretical calculations for H+PD revealed that the ion contains an intramolecular hydrogen bond (IHB), with two oxygen atoms bridged by the extra proton in an O—H+ … O form. Attachment of one water molecule to it readily ruptures this IHB, replacing the H+ by the H3O+ moiety. Further replacement of the IHB by two water molecules occurs at n = 2 and the ?C(O)CH2C(O)- chain is fully opened (or unfolded) after transfer of the extra proton to the water trimer at n = 3. To verify the computational findings, infrared spectroscopic measurements were performed using a vibrational predissociation ion trap spectrometer to identify cluster isomers from the signatures of hydrogen bonded and non-hydrogen bonded OH stretching spectra of H+PD(H2O)2,3 produced in a corona discharge supersonic expansion. Besides open form isomers, evidence for the formation of water-bridged structures has been found for H+PD(H2O)3 at an estimated temperature of 200 K. A detailed illustration of the unfolding steps as well as the energy profiles for the evolution of a two-water bridge isomer from the protonated H+PD monomer are analysed pictorially (including both stable intermediates and transition states) in the present investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号