首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical modification of colloidal masks for nanolithography   总被引:2,自引:0,他引:2  
A method is presented to tune the holes in colloidal masks used for nanolithography. Using a simple wet-chemical method, a thin layer of silica is grown on masks of silica particles. The size of the holes is controlled by the amount of tetraethoxysilane (TEOS) added. More accurate tuning of the hole size is possible in the presence of a calibrated seed dispersion of silica colloids. We demonstrate modified masks that were used to create arrays of metal nanoparticles with a size ranging from 400 nm, for unmodified masks, down to tens of nanometers. The method is easy-to-use, fast, and inexpensive.  相似文献   

2.
A novel approach to fabricate periodic one-dimensional (1D) nanostructured arrays is developed using monolayer colloidal crystals as templates or masks. This approach is more flexible and less costly than traditional lithographic techniques. The morphology and structural parameters of periodic arrays can be easily controlled, further resulting in optimized properties. Herein we introduce recent work to create periodic 1D nanostructured arrays by combining colloidal templates with other techniques, such as solution techniques, electrodeposition, wet chemical etching, reactive ion etching (RIE), pulsed laser deposition (PLD), and sputtering. These periodic 1D nanostructured arrays with controllable morphology and structural parameters have extensive applications in areas such as nanophotonics, field emitters, solar cells, light-emitting diodes, and microfluidic devices.  相似文献   

3.
This communication reports a simple yet versatile nonlithographic approach for fabricating wafer-scale periodic nanohole arrays from a large variety of functional materials, including metals, semiconductors, and dielectrics. Spin-coated two-dimensional (2D) nonclose-packed colloidal crystals are used as first-generation shadow masks during physical vapor deposition to produce isolated nanohole arrays. These regular nanoholes can then be used as second-generation etching masks to create submicrometer void arrays in the substrates underneath. Complex patterns with micrometer-scale resolution can be made by standard microfabrication techniques for potential device applications. These 2D-ordered nanohole arrays may find important technological applications ranging from subwavelength optics to interferometric biosensors.  相似文献   

4.
We report here a novel colloidal lithographic approach to the fabrication of nonspherical colloidal particle arrays with a long-range order by selective reactive ion etching (RIE) of multilayered spherical colloidal particles. First, layered colloidal crystals with different crystal structures (or orientations) were self-organized onto substrates. Then, during the RIE, the upper layer in the colloidal multilayer acted as a mask for the lower layer and the resulting anisotropic etching created nonspherical particle arrays and new patterns. The new patterns have shapes that are different from the original as a result of the relative shadowing of the RIE process by the top layer and the lower layers. The shape and size of the particles and patterns were dependent on the crystal orientation relative to the etchant flow, the number of colloidal layers, and the RIE conditions. The various colloidal patterns can be used as masks for two-dimensional (2-D) nanopatterns. In addition, the resulting nonspherical particles can be used as novel building blocks for colloidal photonic crystals.  相似文献   

5.
Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.  相似文献   

6.
Nanosphere lithography (NSL) has been regarded as an inexpensive, inherently parallel, high-throughput, materials-general approach to the fabrication of nanoparticle arrays. However, the order of the resulting nanoparticle array is essentially dependent on the quality of the colloidal monolayer mask. Furthermore, the lateral feature size of the nanoparticles created using NSL is coupled with the diameter of the colloidal spheres, which makes it inconvenient for studying the size-dependent properties of nanoparticles. In this work, we demonstrate a facile approach to the fabrication of a large-area, transferrable, high-quality latex colloidal mask for nanosphere lithography. The approach is based on a combination of the air/water interface self-assembly method and the solvent-vapor-annealing technique. It enables the fabrication of colloidal masks with a higher crystalline integrity compared to those produced by other strategies. By manipulating the diameter of the colloidal spheres and precisely tuning the solvent-vapor-annealing process, flexible control of the size, shape, and spacing of the interstice in a colloidal mask can be realized, which may facilitate the broad use of NSL in studying the size-, shape-, and period-dependent optical, magnetic, electronic, and catalytic properties of nanomaterials.  相似文献   

7.
A new method was proposed to prepare binary composite colloidal crystal hydrogels by interlocking the as-prepared polystyrene/sulfonated polystyrene core/shell colloidal crystal hydrogel with a second responsive gel. The shell thickness thus the core size were synchronously controlled by altering the sulfonation time and temperature. The proper monomers were radically polymerized forming the second gel within the first gel network. The composition and structure were confirmed. Nanopatterued hydrogel including porous bulk hydrogels and surface patterned hydrogels were derived by properly treating the binary composite hydrogels. Specially, some typical patterns such as arrays of “nano-bowls” ,arrays of “nano-ribbons” and “nano-mask” were achieved by changing the treatment method such as by immersion in the solvent, after solvent evaporation from the sample surface during high rate rotation. This work provides a method to prepare nanopatterued hydrogels.  相似文献   

8.
综述了近年来胶体刻蚀领域的研究进展, 分别讨论了基于胶体微粒和胶体晶体为模板的可控沉积与可控刻蚀及在固体平面基质、曲面基质和气液界面等不同基质上构筑结构化表面的方法. 同时还探讨了利用胶体刻蚀方法形成的微纳结构在光、电、磁以及表面润湿和生物学等方面的应用.  相似文献   

9.
We report the formation of microscopic patterns of substrate-supported, 3D planar colloidal crystals using physical confinement in conjunction with surfaces displaying predetermined binary patterns of hydropholicity. The formation process involves a primary self-assembly wherein nano- and microscale colloids order into a photonic fcc lattice via capillary interactions followed by a secondary template-induced crystal cleavage step. Following this method, arbitrary arrays of pattern elements, which preserve structural and orientational properties of the parent crystal, can be easily obtained.  相似文献   

10.
This communication demonstrates an approach to generate simple nanostructures with critical dimensions down to 30 nm over cm2-sized areas using composite PDMS masks. These masks were patterned with feature sizes down to 100 nm. When used in phase-shifting lithography, these masks generated arrays of structures in photoresist with line widths as small as 30 nm, slots in metal with features down to 40 nm, and wells in epoxy with diameters as small as 100 nm. The wells were used to prepare arrays of uniformly sized nanocrystals of salts.  相似文献   

11.
The effects of medium composition on the optical properties and microstructures of non-close-packed silica colloidal crystalline arrays have been demonstrated. Water–alcohol mixtures were used as dispersion media for these arrays. Optical properties and microstructures were examined using angle-resolved reflection spectra measurements. The Bragg diffraction peaks of the colloidal crystalline arrays shifted with changing of concentration or hydrocarbon number of alcohol. With an increase in concentration or hydrocarbon number of alcohol, the effective refractive index of the dispersion increased and the interplanar spacing of the colloidal crystalline array decreased. The increase in effective refractive index was caused by an increase in the refractive index of the mixed medium with the change in solvent. The decrease in interplanar spacing of the array was caused by decreased electrostatic repulsions between the silica spheres with decreasing dielectric constant. The current work suggests new possibilities for the control of optical properties and microstructures of colloidal crystalline arrays.  相似文献   

12.
This work shows that mesoporous polymeric films with spherical and elliptical pores can be obtained by in situ structure inversion of the azo polymer colloid arrays through selective interaction with solvent. The epoxy-based azo polymer contained both the pseudo-stilbene-type azo chromophores and the hydrophilic carboxyl groups. The colloidal spheres of the azo polymer were prepared by gradual hydrophobic aggregation of the polymeric chains in THF-H2O media, induced by a steady increase in the water content. Ordered 2D arrays of the hexagonally close-packed colloidal spheres were obtained by the vertical deposition method. After the solvent (THF) annealing, the ordered 2D arrays were directly transformed to mesoporous films through the sphere-pore inversion. Under the same condition, the 2D arrays composed of the ellipsoidal colloids, which were obtained by the irradiation of a polarized Ar+ laser beam on the colloidal sphere arrays, could be transformed to films with ordered elliptical pores. To our knowledge, this is the first example to demonstrate that mesoporous structures can be directly formed from the colloidal arrays of a homopolymer through structure inversion. This observation can shed new light on the nature of self-assembly processes and provide a feasible approach to fabricate mesoporous structures without the infiltration-removal step. By exploring the photoresponsive properties of the materials, mesoporous film with special pore structure and properties can be expected.  相似文献   

13.
This experimental paper deals with phase separations of binary mixtures composed of a continuous liquid crystal phase and an isotropic dispersed phase. In contrast to isotropic binary mixtures, the investigated mixtures do not lead to a full phase separation but to a self-ordering of colloidal particles, as reported earlier (Loudet, J. C. et al. Nature 2000, 407, 611). We present here further aspects of such phase separations which include the kinetics of the phase separation, the origin of the formation of dislocation-like patterns, the influence of surfactants, chiral additives, and temperature on the formed colloidal structures. The present results show that (i) the dislocations in chain arrays can be seen as kinetically frozen defects, (ii) temperature can be used to control the size of the domains formed upon demixing, (iii) a slight change in surface chemistry, via the addition of surfactants, profoundly alters the formed colloidal structures, and (iv) chiral additives allow the formation of unique helical pearl chains which reflect the symmetry of the liquid crystal phase they are embedded in.  相似文献   

14.
Here we present a simple but general method for constructing complex binary colloidal crystals with an almost full range of size ratios, which is referred to as "template-assisted electric-field-induced assembly (TAEFIA)". The dependence of the structures of binary colloidal crystals on size ratio (gamma) and volume fraction (varphi) of the colloidal suspension was investigated. Binary colloidal crystals with gamma ranges from 0.10 to 0.91 were fabricated, and an attempt to fabricate a triple colloidal crystal via TAEFIA was presented. We suggest that TAEFIA is a versatile way to grow colloidal crystals with binary or more complex structures.  相似文献   

15.
The crystalline colloidal arrays with controllable photonic bandgaps were prepared by the change of volume fraction of the polystyrene microspheres. Upconversion emission property of fluorescent dye has investigated in crystalline colloidal array, and continuous modification of the upconversion emission of fluorescent dye was observed. A significant suppression of upconversion emission of dye in the range of the photonic bandgap as well as enhancement at the bandgap edge was obtained in the crystalline colloidal arrays. In addition, upconversion emission of dye was also enhanced when the excited light overlapped with the long or short bandgap edge of the crystalline colloidal arrays, which is due to slow photons effect near the edges of a photonic bandgap. The continuous modification and enhancement of upconversion emission may be important for the development of low-threshold upconversion lasers and displays.  相似文献   

16.
In this paper we report a generalized templating approach for fabricating wafer-scale, two-dimensional, non-close-packed (ncp) colloidal crystals. Polymer nanocomposites consisting of monolayer ncp colloidal crystals prepared by a spin-coating process are used as sacrificial templates. After removal of the colloidal silica templates, the voids in the polymer matrix are infiltrated with other materials. By plasma-etching the polymer matrix, wafer-scale ncp colloidal crystals from a variety of functional materials can be made. This technique is scalable and compatible with standard microfabrication. Two-component colloidal arrays with complex micropatterns can also be fabricated by combining microfabrication with this templating approach. Normal-incidence reflectivity spectra of replicated titania ncp arrays agree well with theoretical prediction using Scalar Wave Approximation.  相似文献   

17.
Non-close-packed silica colloidal crystalline array was immobilized by polymer, and effects of stretching on the change of the optical properties and microstructure of the colloidal crystalline arrays have been demonstrated. The immobilization was a two-step polymerization process: the first step was with hydrophilic polyethylene glycol acrylate (PEGA) polymer gel, and the second step was with 2-hydroxyethyl acrylate polymer matrix. The structure of the three-dimensional array was maintained during the immobilizing process with lock in periodic order. The peak wavelength of Bragg diffraction of the polymer-immobilized colloidal crystalline array shifted to shorter wavelength with stretching. The peak shift was caused by the compression of the polymer proportional to the stretching ratio, and the compression was homogeneous throughout the polymer-immobilized colloidal crystalline arrays. These results show that by using polymer-immobilized non-close-packed colloidal crystalline array, mechanically tunable photonic crystals can be realized, and they open the possibility of tuning the microstructure of colloidal crystalline array for photonic crystal.  相似文献   

18.
Silicon disk arrays and silicon pillar arrays with a close-packed configuration having an ordered periodicity were fabricated by the electrochemical etching of a silicon substrate through colloidal crystals used as a mask. The colloidal crystals were directly prepared by the self-assembly of polystyrene particles on a silicon substrate. The transfer of a two-dimensional hexagonal array of colloidal crystals to the silicon substrate could be achieved by the selective electrochemical etching of the exposed silicon surfaces, which were located in interspaces among adjacent particles. The diameter of the tip of the silicon pillars could be controlled easily by changing the anodization conditions, such as current density and period of electrochemical etching.  相似文献   

19.
微型化是纳米科技发展的关键驱动力之一,然而使用现行的光刻技术生产大规模集成电路器件的技术已经接近极限尺寸(~0.8μm).1982年STM的研制成功使得在纳米尺寸上进行操作成为可能[1-3]同时,LB技术正在应用于纳米粒子薄膜的制备中[4].进一步利用Iangmuir单层膜诱导控制  相似文献   

20.
Stable monolayers of electropolymerized poly-N-vinylcarbazole (EPVK) and arachidic acid(AA) are obtained on a subphase of alkaline Tl2O3 colloidal solutions. As revealed by the atomic force microscope, there is phase separation in the mixed LB monolayers. Transmission electron microscopic observations reveal that ordered arrays of composite Tl2O3/Epvk nanowires are formed in the mixed monolayers. Formation of the composite nanowire arrays is attributed to the ordered adsorption of Tl2O3 colloidal particles along the polycationic EPVK chains. The composite nanowire array is 3.2nm wide with a spacing of 2.7nm.The composite nanowire arrays can also be formed when pure EPVK is used. Composite LB multilayers of Tl2O3/EPVK nanowire arrays are prepared. The bilayer spacing is 5.54nm.The present study is of importance to the fabrication of inorganic semiconductor/functional polymer composite nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号