首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The direct electron transfer of glucose oxidase (GOD) immobilized on a composite matrix based on porous carbon nanofibers (PCNFs), room-temperature ionic liquid (RTIL), and chitosan (CHIT) underlying on a glassy carbon electrode was achieved. The combination of the PCNFs, RTIL, and CHIT provided a suitable microenvironment for GOD to transfer electron directly. In deaerated buffer solutions (pH 7.0), the cyclic voltammetry of the GOD/PCNFs/RTIL/CHIT composite films showed a pair of well-defined redox peaks with the formal potential of −0.45 V (vs. SCE). The synergistic effort of the PCNFs, RTIL, and CHIT also promoted the stability of GOD in the composite film and retained its bioactivity.  相似文献   

2.
应用扫描电化学显微镜研究了室温离子液体(Omim·Tf2N)与1,2-二氯乙烷(DCE)混合溶液/水界面上的电子转移反应. 在保持共同离子(Tf2N-)的浓度比恒定及异相电子转移反应由界面电势差所决定的条件下, 研究了离子液体和DCE混合溶液中二茂铁(Fc)与水相中亚铁氰化钾[K4Fe(CN)6]之间异相电子转移反应. 探讨了混合溶液中离子液体的体积分数(xRTIL)的变化对混合溶液/水界面上电子转移反应的影响. 结果表明, 随着xRTIL的减小(从1减小到0.1), Fc在混合溶液中的扩散系数单调递增(从2.730×10-7 cm2·s-1增加到9.131×10-6 cm2·s-1); 而异相电子转移反应速率常数(k)则先逐渐减小(从8.0 mol-1·cm·s-1减小到0.32 mol-1·cm·s-1), 之后又略有增大(从0.32 mol-1·cm·s-1增大到0.48 mol-1·cm·s-1). 对这种现象可能的原因进行了较详细探讨.  相似文献   

3.
将辣根过氧化物酶(HRP)固定在室温离子液体(RTIL)/聚二茂铁硅烷(PFS)/DNA复合材料修饰的玻碳电极(GCE)表面,构建了GCE/DNA/PFS/RTIL/HRP修饰电极,详细地研究了该修饰电极的电催化行为,优化了电解质溶液的pH值和RTIL的体积对催化过氧化氢(H2O2)的影响。 电化学实验结果表明,DNA、PFS和RTIL复合膜既为HRP提供了一个生物兼容的微环境;又有效地促进了电子在HRP和电极表面之间的传递。 在最优实验条件下,该修饰电极对H2O2具有快速的催化响应,在2 s内即可达到稳态电流的95%,其响应在3.25 μmol/L~1.47 mmol/L(r=0.999,n=10)和1.86~5.35 mmol/L(r=0.996,n=12)范围内呈良好的线性关系,检出限为0.86 μmol/L。 该传感器灵敏度高、重现性和稳定性好。 此外,该修饰电极还能催化O2还原。  相似文献   

4.
New approaches have been developed for measuring the rates of electron transfer (ET) across self-assembled molecular monolayers by scanning electrochemical microscopy (SECM). The developed models can be used to independently measure the rates of ET mediated by monolayer-attached redox moieties and direct ET through the film as well as the rate of a bimolecular ET reaction between the attached and dissolved redox species. By using a high concentration of redox mediator in solution, very fast heterogeneous (10(8) s(-1)) and bimolecular (10(11) mol(-1) cm(3) s(-1)) ET rate constants can be measured. The ET rate constants measured for ferrocene/alkanethiol on gold were in agreement with previously published data. The rates of bimolecular heterogeneous electron transfer between the monolayer-bound ferrocene and water-soluble redox species were measured. SECM was also used to measure the rate of ET through nonelectroactive alkanethiol molecules between substrate gold electrodes and a redox probe (Ru(NH(3))(6)(3+)) freely diffusing in the solution, yielding a tunneling decay constant, beta, of 1.0 per methylene group.  相似文献   

5.
The voltammetric response of graphite or carbon nanotube paste electrodes, which incorporate the room temperature ionic liquid, N‐butyl‐N‐methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide or [C4mpyrr][NTf2], (RTIL‐CNTPE and RTIL‐CPE respectively) as the binder, towards anionic, cationic and neutral redox probes is examined and compared to conventional paste electrodes which use mineral oil as the binder. The RTIL paste electrodes are found to suffer from very large background currents due to capacitive charging. This is exacerbated further when CNTs are combined with RTILs in the paste. The large charging currents obscure any Faradaic processes of interest, especially at low analyte concentrations. By employing steady state voltammetry at a rotating disk electrode made of the RTIL pastes this problem can be overcome. This allows the electroanalytical properties of these interesting electrode substrates, which combine the attractive properties of CNTs with RTILs to be further explored and developed.  相似文献   

6.
Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and digital simulation techniques were used to investigate quantitatively the mechanism of electron transfer (ET) through densely packed and well-ordered self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid on gold, either pristine or modified by physically adsorbed glucose oxidase (GOx). In the presence of ferrocenylmethanol (FcMeOH) as a redox mediator, ET kinetics involving either solution-phase hydrophilic redox probes such as [Fe(CN)6]3-/4- or surface-immobilized GOx is greatly accelerated: [Fe(CN)6]3-/4- undergoes diffusion-controlled ET, while the enzymatic electrochemical conversion of glucose to gluconolactone is efficiently sustained by FcMeOH. Analysis of the results, also including the digital simulation of CV and EIS data, showed the prevalence of an ET mechanism according to the so-called membrane model that comprises the permeation of the redox mediator within the SAM and the intermolecular ET to the redox probe located outside the monolayer. The analysis of the catalytic current generated at the GOx/SAM electrode in the presence of glucose and FcMeOH allowed the high surface protein coverage suggested by X-ray photoelectron spectroscopy (XPS) measurements to be confirmed.  相似文献   

7.
The reductive electrochemistry of substituted benzophenones in the aprotic room-temperature ionic liquid (RTIL) 1-butyl-1-methylpyrrolidinium bistriflimide occurs via two consecutive one-electron processes leading to the radical anion and dianion, respectively. The radical anion exhibited electrochemical reversibility at all time-scales whereas the dianion exhibited reversibility at potential sweep rates of >or=10 V s(-1), collectively indicating the absence of strong ion-paring with the RTIL cation. In contrast, reduction in 1-butyl-3-methylimidazolium bistriflimide is complicated by proton-transfer from the [Bmim] cation. At low potential sweep rates, reduction involves a single two-electron process characteristic of either an electrochemical, chemical, electrochemical (ECE) or disproportion-type (DISP1) mechanism. The rate of radical anion protonation in [Bmim] is governed by basicity and conforms to the Hammett free-energy relation. At higher potential sweep rates in [Bmim][NTf2], reduction occurs via two consecutive one-electron processes, giving rise to the partially reversible generation of the radical anion and the irreversible generation of the dianion, respectively. Also, the redox potentials for the reversible parent/radical anion couples were found to be a linear function of Hammett substituent constants in both RTIL media and exhibited effectively equivalent solvent-dependent reaction constants, which are similar to those for reduction in polar molecular solvents such as acetonitrile or alcohols.  相似文献   

8.
The Hydrogen evolution reaction has been quantitatively investigated at a Pt electrode in series of room temperature ionic liquids vs. Ag/Ag(+) redox couple. The measured formal potentials of the H(2)/H(+) (HNTf(2)) redox couple in each RTIL reveals a dependence on the nature of anion, suggesting significant interaction between proton and anion.  相似文献   

9.
The heme protein cytochrome c (Cyt-c), immobilized on polyelectrolyte multilayers on a silver electrode, was studied by stationary and time-resolved surface-enhanced resonance Raman (SERR) spectroscopy to probe the redox site structure and the mechanism and dynamics of the potential-dependent interfacial processes. The layers were built up by sequential adsorption of polycations (poly[ethylene imine] (PEI); polyallylamine hydrochloride (PAH)) and polyanions (poly[styrene sulfonate] (PSS)). All multilayers terminated by PSS electrostatically bind Cyt-c. On PEI/PSS coatings, Cyt-c is peripherally bound and fully redox-active. Due to the interfacial potential drop, the apparent redox potential is lowered by 40 mV compared to that in solution. The rate constant for the heterogeneous electron transfer (ET) of ca. 0.1 s(-1) is consistent with electron tunneling through largely ordered PEI/PSS layers. ET is coupled to a reversible conformational transition of Cyt-c that involves a change of the coordination pattern of the heme. Additional (PAH/PSS) double layers cause a broadening of the redox transition and a drastic negative shift of the redox potential, which is attributed to the formation of PSS/Cyt-c complexes. It is concluded that Cyt-c can effectively compete with PAH for binding of PSS, resulting in a rearrangement of the layered structure and a penetration of the PSS-bound Cyt-c into the PAH/PSS double layers. This conclusion is consistent with SERR intensity and quartz microbalance measurements. ET was found to be overpotential-independent and faster than that for PEI/PSS coatings, which is interpreted in terms of specific PSS/Cyt-c complexes serving as gates for the heterogeneous ET.  相似文献   

10.
A room temperature ionic liquid (RTIL), 1-ethyl-3-methyl imidazolium tetrafluoroborate ([EMIm][BF4]), was successfully immobilized on the surface of a basal plane graphite (BPG) electrode through silica sol and Nafion film to form a sol/RTIL/Nafion modified electrode. Direct electrochemistry of hemoglobin (Hb), which was adsorbed on the surface of sol/RTIL/Nafion modified electrode, was investigated. The results from cyclic voltammetry (CV) suggested that Hb could be tightly adsorbed on the surface of the electrode. A couple of well-defined and quasi-reversible CV peaks of Hb can be observed in a phosphate buffer solution (pH 7.0). RTIL shows an obvious promotion for the direct electro-transfer between Hb and electrode. Hb adsorbed on electrode surface exhibits an obvious electrocatalytic activity for the reduction of oxygen O2. The reduction peak currents were proportional linearly to the concentration of oxygen in the range 0.14–1.82 μM. A third generation biosensor based on RTIL can be constructed for the determination of O2.  相似文献   

11.
On the growing awareness of the environmental impact associated with the use of volatile organic diluents, room temperature ionic liquid gained world-wild acceptance as environmentally benign diluents for actinide partitioning. The observed unusual behavior of less extraction efficiency of Eu with TODGA in RTIL in comparison with that of Am-TODGA was addressed in this paper. The stoichiometry of Am-TODGA complex was found to be 1:2 while that of Eu-TODGA was 1:1. More the ligand molecules associated in the metal ligand complex, the organophilicity of the complex will be more and the solubility of the metal–ligand complex in RTIL will be more which reflects in the higher distribution ratio for Am. In RTIL both Am and Eu showed slower kinetics of extraction with TODGA which can be attributed to the high viscosity coefficient of RTIL compared to the molecular diluents. The observed slower kinetics of extraction was quantified and found to follow first order kinetics with the rate constant of 5.5 × 10?4 s?1. The formation constant of Am-TODGA complex was found to be more (4.18 × 108 M?1) than Eu-TODGA complex (3.31 × 108 M?1) in RTIL. The parameters viz. diffusion coefficient, activation energy for Eu(III)/Eu(II) were determined and found to be 3.08 × 10?8/cm2 s?1 (at 303 K) and 39.34 kJ mol?1 respectively. The thermodynamic parameters ΔG, ΔH and ΔS for the reaction were evaluated using the linear regression of the plot of E 0* versus T. The redox reaction was found to be exothermic with decrease in entropy value.  相似文献   

12.
In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E(sq/hq)) is ~170 mV, a striking difference. The former greatly prefers NAD(+) as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD(+)), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 ? resolution crystal structures for XDH, XO, the NAD(+)- and NADH-complexed XDH, E(sq/hq) were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E(sq/hq) difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD(+) binding at XDH. Instead, the positive charge of the NAD(+) ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD(+) molecule all contribute to altering E(sq/hq) upon NAD(+) binding to XDH.  相似文献   

13.
Summary Room temperature ionic liquids (RTIL) are molten salts with melting points well below room temperature. 1-butyl-3-methylimidazolium chloride is a typical example of such RTIL. It was used as a solvent to dissolve permethylated-β-cyclodextrin (BPM) and dimethylated-?cyclodextrin (BDM) to prepare stationary phases for capillary columns in gas chromatography for chiral separation. The RTIL containing columns were compared to commercial columns containing the same chiral selectors. A set of 64 chiral compounds separated by the commercial BPM column was tested on the RTIL BPM column. Only 21 were enantioresolved. Similarly, a set of 80 compounds separated by the commercial BDM column was passed on the RTIL BDM column with only 16 positive separations. It is proposed that the imidazolium ion pair could make an inclusion complex with the cyclodextrin cavity, blocking it for chiral recognition. All the chiral compounds recognized by the RTIL columns had their asymmetric carbon that was part of a ring structure. The retention factors of the derivatized solutes were lower on the RTIL columns than those obtained on the commercial equivalent column. The peak efficiencies obtained with the RTIL capillary were significantly higher than that obtained with the commercial column. These observations may contribute to the knowledge of the mechanism of cyclodextrin-based GC enantioselective separations.  相似文献   

14.
We report the comparison of electron transfer kinetic parameters of the ferrocene redox couple in both acetonitrile and in room temperature ionic liquid (RTIL) 1‐butyl‐3‐methylimidiazonium hexafluorophosphate ([C4mim] [PF6]), using edge plane pyrolytic graphite (EPPG), basal plane pyrolytic graphite (BPPG) and glassy carbon (GC) electrodes. Each electrode surface was characterized using SEM and AFM and the surface morphology was analyzed in terms of surface heterogeneity including the distribution of edge plane defects. The experimental data were modeled using both one and two dimensional simulations to correlate the electron transfer parameters obtained with the different surface structure of each electrode. Furthermore, we show that the diffusion domain approximation (commonly used to accurately simulate electron transfer kinetics at graphitic surfaces) breaks down when a BPPG electrode is used in RTIL and demonstrate the near impossibility of assigning rate constant to the basal plane surface.  相似文献   

15.
In protein film voltammetry, a redox enzyme is directly connected to an electrode; in the presence of substrate and when the driving force provided by the electrode is appropriate, a current flow reveals the steady-state turnover. We show that, in the case of a multicenter enzyme, this signal reports on the energetics and kinetics of electron transfer (ET) along the redox chain that wires the active site to the electrode, and this provides a new strategy for studying intramolecular ET. We propose a model which takes into account all the enzyme's redox microstates, and we prove it useful to interpret data for various enzymes. Several general ideas emerge from this analysis. Considering the reversibility of ET is a requirement: the usual picture, where ET is depicted as a series of irreversible steps, is oversimplified and lacks the important features that we emphasize. We give justification to the concept of apparent reduction potential on the time scale of turnover and we explain how the value of this potential relates to the thermodynamic and kinetic properties of the system. When intramolecular ET does not limit turnover, the redox chain merely mediates the driving force provided by the electrode or the soluble redox partner, whereas when intramolecular ET is slow, the enzyme behaves as if its active active site had apparent redox properties which depend on the reduction potentials of the relays. This suggests an alternative to the idea that redox chains are optimized in terms of speed: evolutionary pressure may have resulted in slowing down intramolecular ET in order to tune the enzyme's "operating potential".  相似文献   

16.
Electron transfer (ET) between gold electrodes and redox-labeled DNA duplexes, immobilized onto the electrodes through the alkanethiol linker at the 3'-end and having internal either methylene blue (MB) or anthraquinone (AQ) redox labels, was shown to depend on the redox label charge and the way the redox label is linked to DNA. For loosely packed DNA monolayers, the conjugation of the positively charged MB to DNA through the long and flexible alkane linker provided ET whose kinetics was formally governed by the diffusion of the redox label to the negatively charged electrode surface. For the uncharged AQ label no ET signal was detected. The conjugation of AQ to DNA through the short and more conductive acetylene linker did not provide the anticipated DNA-mediated ET to the AQ-moiety: ET appeared to be low-efficient if any in the studied system, for which no intercalation of AQ within the DNA duplex occurred. The ET communication between the electrode and AQ, built in DNA through the acetylene linker, was achieved only when Ru(NH(3))(6)(3+) molecules were electrostatically attached to the DNA duplex, thus forming the electronic wire. These results are of particular importance both for the fundamental understanding of the interfacial behavior of the redox labeled DNA on electrodes and for the design of biosensors exploiting a variation of ET properties of DNA in the course of hybridization.  相似文献   

17.
The direct electron transfer (ET) of copper–zinc superoxide dismutase (SOD) has been realized, for the first time, at Au nanoparticles electrodeposited onto GC (nano-Au/GC) electrodes. Electrodeposition of Au nanoparticles in the presence of some additive (typically cysteine) resulted in the fabrication of Au nanoparticles with a high roughness morphology (enriched in the Au(1 0 0) orientation) and thus providing a favorable adsorption orientation of SOD (key–lock interaction) suitable for a facilitated direct ET without the use of mediators or so-called ET promoters. The redox reaction of the SOD confined on the nano-Au/GC electrode was found to have a formal potential of +0.02 V vs. Ag/AgCl/KCl(sat). Whereas, round-shape spherical plumbs of Au nanoparticles were electrodeposited in the presence of iodide ions (as additive) which lack for the favorable rough surface and consequently the suitable interaction with the SOD is missing and hence the ET is not realized at this surface.  相似文献   

18.
An ultrathin, ordered, and packed protein film, consisting of the 2-mercaptoacetic acid (MAA), polydimethyldiallylammonium chloride (PDDA), and wild-type (WT) photosynthetic reaction center (RC; termed as WT-RC) or its pheophytin (Phe)-replaced counterpart (termed as Phe-RC), was fabricated by self-assembling technique onto gold electrode for facilitating the electron transfer (ET) between RC and the electrode surface. Near-infrared (NIR)-visible (Vis) absorption and fluorescence (FL) emission spectra revealed the influence of pigment substitution on the cofactors arrangement and excitation relaxation of the proteins, respectively. Square wave voltammetry (SWV) and photoelectric tests were employed to systematically address the differences between the WT-RC films and mutant ones on the direct and photo-induced ET. The electrochemical results demonstrated that ET initiated by the oxidation of the primary donor (P) was obviously slowed down, and the formed P+ had more population as well as more positive redox potential in the Phe-RC films compared with those in the WT ones. The photoelectrochemical results displayed the dramatically enhanced photoelectric performances of the mutant ones, further suggesting the slow-down formation of final charge-separated state in Phe-RC. The functionalized protein films introduced in this paper provided an efficient approach to sensitively probe the redox cofactors and ET differences resulting from only minor changes in pigment arrangement in the pigment–protein complex. The favored ET process observed for the membrane proteins RC was potentially valuable for a deep understanding of the multi-step biological ET process and development of versatile bioelectronic devices.  相似文献   

19.
The much‐enhanced electrochemical responses of potassium ferricyanide and methylene blue (MB) were firstly explored at the glassy carbon electrode modified with single‐walled carbon nanotubes (SWNT/GCE), indicating the distinct electrochemical activity of SWNTs towards electroactive molecules. A hydrophobic room temperature ionic liquid (RTIL), 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6), was used as electrode modification material, which presented wide electrochemical windows, proton permeation and selective extraction ability. In consideration with the advantages of SWNTs and RTIL in detecting target molecules (TMs), a novel strategy of ‘sandwich–type’ electrode was established with TMs confined by RTIL between the SWNT/GCE and the RTIL membrane. The strategy was used for electrochemical detection of ascorbic acid (AA) and dopamine (DA), and detection limits of 400 and 80 fmol could be obtained, respectively. The selective detection of DA in the presence of high amount of AA could also be realized. This protocol presented many attractive advantages towards voltammetric detection of TMs, such as low sample demand, low cost, high sensitivity, and good stability.  相似文献   

20.
The polarographic streaming maxima and cyclic voltammetric anodic current oscillation (CVACO) at a hanging mercury drop electrode (HMDE) in room-temperature ionic liquid (RTIL) have been studied for the first time using cyclic voltammetric, potential step chronoamperometric and pulse voltammetric techniques. The reversible redox reaction of the 2,1,3-benzothiadiazole (BTD)/BTD*- (an anion radical of BTD) couple with a formal potential (E0') of -1.36 V versus Ag/AgCl/NaCl(saturated) in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) RTIL was typically employed for this purpose. A maximum was observed at the rising part of the normal pulse voltammogram for the reduction of BTD to BTD*- as well as of the reversed pulse voltammogram for the reoxidation of BTD*- to BTD at the HMDE. The conditions of the initiation and control of the CVACO at the HMDE in EMIBF4 were extensively investigated. Generally, the CVACO was enhanced by increasing the concentration of BTD at a given potential scan rate (upsilon) and was attenuated by increasing upsilon. An electrocapillary curve was measured using a dropping mercury electrode in EMIBF4, and the potential of zero charge was determined to be -0.23 V. On the basis of the modern theory of the polarographic streaming maxima of the first kind, the observed streaming maxima and CVACO phenomena are successfully explained to originate from the macroscopic instability at the electrode/solution interface wherein the oscillating mode creates the CVACO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号