首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrate(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites have a d(003) spacing of 10.9 and 11.1 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations show dehydration with a total loss of 7 moles of water proving the formula of hexacyanoferrate(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5·7H2O and 9.0 moles for the hexacyanoferrate(III) intercalated hydrotalcite with the formula of Mg6Al2(OH)16[Fe(CN)6]0.66·9H2O. CRTA technology indicates the partial collapse of the dehydrated mineral. Dehydroxylation combined with CN unit loss occurs in two isothermal stages at 377 and 390°C for the hexacyanoferrate(III) and in a single isothermal process at 374°C for the hexacyanoferrate(III) hydrotalcite.  相似文献   

2.
Hydrotalcites containing carbonate, vanadate and molybdate were prepared by coprecipitation. The resulting materials were characterized by XRD, and TG/DTA to determine the stability of the hydrotalcites synthesized. The thermal decomposition of carbonate hydrotalcites consist of two decomposition steps between 300 and 400°C, attributed to the simultaneous dehydroxylation and decarbonation of the hydrotalcite lattice. Water loss ascribed to dehydroxylation occurs in two decomposition steps, where the first step is due to the partial dehydroxylation of the lattice, while the second step is due to the loss of water interacting with the interlayer anions. Dehydroxylation results in the collapse of the hydrotalcite structure to that of its corresponding metal oxides, including MgO, Al2O3, MgAl2O4, NaMg4(VO4)3 and Na2Mg4(MoO4)5. The presence of oxy-anions proved to be beneficial in the stability of the hydrotalcite structure, shown by the delay in dehydroxylation of oxy-anion containing hydrotalcites compared to the carbonate hydrotalcite. This is due to the substantial amount of hydroxyl groups involved in a network of hydrogen bonds involving the intercalated anions. Therefore, the stability of the hydrotalcite structure appears to be dependent on the type of anion present in the interlayer. The order of thermal stability for the synthesized hydrotalcites in this study is Syn-HT-V>Syn-HT-Mo> Syn-HT-CO3-V>Syn-HT-CO3-Mo>Syn-HT-CO3. Carbonate containing hydrotalcites prove to be less stable than oxy-anion only hydrotalcites.  相似文献   

3.
Thermal analysis complimented with evolved gas mass spectrometry has been applied to hydrotalcites containing carbonate prepared by coprecipitation and with varying divalent/trivalent cation ratios. The resulting materials were characterised by XRD, and TG/DTG to determine the stability of the hydrotalcites synthesised. Hydrotalcites of formula Mg4(Fe,Al)2(OH)12(CO3)·4H2O, Mg6(Fe,Al)2(OH)16(CO3)·5H2O, and Mg8(Fe,Al)2(OH)20(CO3)·8H2O were formed by intercalation with the carbonate anion as a function of the divalent/trivalent cationic ratio. XRD showed slight variations in the d-spacing between the hydrotalcites. The thermal decomposition of carbonate hydrotalcites consists of two decomposition steps between 300 and 400°C, attributed to the simultaneous dehydroxylation and decarbonation of the hydrotalcite lattice. Water loss ascribed to dehydroxylation occurs in two decomposition steps, where the first step is due to the partial dehydroxylation of the lattice, while the second step is due to the loss of water interacting with the interlayer anions. Dehydroxylation results in the collapse of the hydrotalcite structure to that of its corresponding metal oxides and spinels, including MgO, MgAl2O4, and MgFeAlO4.  相似文献   

4.
Summary A combination of thermogravimetry and hot stage Raman spectroscopy has been used to study the thermal decomposition of the synthesised zinc substituted takovite Zn6Al2CO3(OH)16·4H2O. Thermogravimetry reveals seven mass loss steps at 52, 135, 174, 237, 265, 590 and ~780°C. MS shows that the first two mass loss steps are due to dehydration, the next two to dehydroxylation and the mass loss step at 265°C to combined dehydroxylation and decarbonation. The two higher mass loss steps are attributed to decarbonation. Raman spectra of the hydroxyl stretching region over the 25 to 200°C temperature range, enable identification of bands attributed to water stretching vibrations, MOH stretching modes and strongly hydrogen bonded CO32--water bands. CO32- symmetric stretching modes are observed at 1077 and 1060 cm-1. One possible model is that the band at 1077 cm-1is ascribed to the CO32- units bonded to one OH unit and the band at 1092 cm-1is due to the CO32- units bonded to two OH units from the Zn-takovite surface. Thermogravimetric analysis when combined with hot stage Raman spectroscopy forms a very powerful technique for the study of the thermal decomposition of minerals such as hydrotalcites.</o:p>  相似文献   

5.
The mineral stichtite was synthesised and its thermal decomposition measured using thermogravimetry coupled to an evolved gas mass spectrometer. Mass loss steps were observed at 52, 294, 550 and 670°C attributed to dehydration, dehydroxylation and loss of carbonate. The loss of carbonate occurred at higher temperatures than dehydroxylation.  相似文献   

6.
Summary The unit cell parameters of virgin and thermally treated potassium hexacyanoferrate(II)trihydrate (KFCT) crystals are measured at room temperature. Considerable changes in the lattice constants are observed for as-grown or pre-cooled to the liquid nitrogen temperature samples after heating up to selected higher temperatures for different times. The detected variations may be due to partial or total removal of the three water molecules of crystallization and the transformation of Fe2+ to Fe3+. DSC, DTA and TG are used to study physical and chemical changes associated with the observed crystallographic variations. The effect of γ-irradiation with a dose of 5×105 Gy on the crystal structure of KFCT is also examined. Two computer software programs are used to analyze the data of the X-ray diffraction patterns and the results are compared.  相似文献   

7.
The thermal decomposition of natural iowaite of formula Mg6Fe2(Cl,(CO3)0.5)(OH)16·4H2O was studied by using a combination of thermogravimetry and evolved gas mass spectrometry. Thermal decomposition occurs over a number of mass loss steps at 60°C attributed to dehydration, 266 and 308°C assigned to dehydroxylation of ferric ions, at 551°C attributed to decarbonation and dehydroxylation, and 644, 703 and 761°C attributed to further dehydroxylation. The mass spectrum of carbon dioxide exhibits a maximum at 523°C. The use of TG coupled to MS shows the complexity of the thermal decomposition of iowaite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A combination of high resolution thermogravimetric analysis coupled to a gas evolution mass spectrometer has been used to study the thermal decomposition of synthetic hydrotalcites reevesite (Ni6Fe2(CO3)(OH)16·4H2O) and pyroaurite (Mg6Fe2(SO4,CO3)(OH)16·4H2O) and the cationic mixtures of the two minerals. XRD patterns show the hydrotalcites are layered structures with interspacing distances of around 8.0. Å. A linear relationship is observed for the d(001) spacing as Ni is replaced by Mg in the progression from reevesite to pyroaurite. The significance of this result means the interlayer spacing in these hydrotalcites is cation dependent. High resolution thermal analysis shows the decomposition takes place in 3 steps. A mechanism for the thermal decomposition is proposed based upon the loss of water, hydroxyl units, oxygen and carbon dioxide.  相似文献   

9.
A new electroactive polynuclear inorganic compound of a rare earth metal hexacyanoferrate, samarium hexacyanoferrate (SmHCF), was prepared chemically and characterized using techniques of FTIR spectroscopy, thermogravimetric analysis (TGA), X-ray powder diffraction, UV–Vis spectrometry and X-ray photoelectron spectroscopy (XPS) etc. The cyclic voltammetric behavior of SmHCF mechanically attached to the surface of graphite electrode was well defined and exhibited a pair of redox peaks with the formal potential of 180.5 mV (versus SCE) at a scan rate of 100 mV/s in 0.2-M NaCl solution and the redox peak currents increased linearly with the square root of the scan rates up to as high as 1,000 mV/s. The effects of the concentration of supporting electrolyte on the electrochemical characteristics of SmHCF and the transport behavior of K+, Na+ and Li+ counter-ions through the ion channel of SmHCF were studied by voltammetry.  相似文献   

10.
Potassium cobalt hexacyanoferrate(II), K2CoFe(CN)6 · 1.4H2O, loses its water when heated up to 170°C, and the anhydrous compound begins to decompose above 230°C. The cyanide groups are evaporated off in the temperature range 230–350°C, and the solid products thus formed are K2CO3, Fe2O3, Co3O4 and CoFe2O4. In the range 550–900°C, the cobalt-containing compounds become CoO, and K2CO3 probably partly decomposes to K2O, so that the product mixture at 900°C is K2CO3/K2O, Fe2O3 and CoO. Above this temperature, K2CO3 decomposes to K2O.  相似文献   

11.
Potassium hexacyanoferrate(II) trihydrate, K4Fe(CN)6·3H2O, was heated under controlled conditions of mass and rate in a derivatograph in the presence of oxygen. The heating was stopped at different temperatures and Mössbauer spectra and X-ray diffractograms were taken on the quenched material at room temperature. The reaction pathway was studied in this way and the advantages and drawbacks of each of the techniques are described. At different stages of the thermal process we were able to show the presence of K4Fe(CN)6,-Fe2O3, Fe3O4, Fe3C, Fe, FeO, KFeO2,-FeOOH, KOCN, K2CO3 and KCN.
Zusammenfassung Kaliumhexacyanoferrat(II)trihydrat, K4[Fe(CN)6.3H2O wurde unter kontrollierten Bedingungen in einem Derivatographen in Gegenwart von Sauerstoff erhitzt. Das Aufheizen wurde bei verschiedenen Temperaturen gestoppt und Mössbauer-Spektren, sowie Röntgendiffraktogramme aufgenommen. Der Reaktionsweg wurde auf diese Weise untersucht und die Vor- und Nachteile jeder der Techniken beschrieben. Bei den verschiedenen Stufen des thermischen Vorganges konnten K4[Fe(CN)6],-Fe2O3, Fe3O4, Fe3C, Fe, FeO, KFeO2,-FeOOH, KOCN, K2CO3 und KCN nachgewiesen werden.

Resumé Le ferrocyanure de potassium trihydraté, K4Fe(CN)6·3H2O, a été chauffé en présence d'oxygÊne dans un Derivatograph, dans des conditions bien déterminées de masse et de vitesse de chauffage. Le chauffage a été interrompu à diverses températures et les spectres Mössbauer ainsi que les diffractogrammes de rayons X ont été enregistrés aprÊs trempe du matériau à la température ambiante. On a étudié de cette faÇon le déroulement de la réaction; on décrit les avantages et les inconvénients de chacune de ces techniques. On a pu déceler la présence de K4Fe(CN)6,-Fe2O3, Fe3O4 Fe3C, Fe, FeO, KFeO2,-FeOOH, KOCN, K2CO3 et KCN aux différentes étapes du traitement thermique.

- (II)- -4F/)6. 33- . . . K4Fe(CN)6, -Fe2O3, Fe3O4, Fe3C, Fe, FeO, KFeO2,-FeOOH, KOCN, K2CO3 KCN.


This research was performed with financial support from the Conselho Nacional de Desenvolvimento Científico e TecnolÔgico (CNPq) and Financiadora de Estudos e Projetos (FINEP). We are grateful to Profs. A. Bristoti, J. Danon, P. J. Aymonino, E. Baran and M. A. Blessa for valuable suggestions and criticisms, and Miss E. A. Veit for performing the thermal measurements at the Pontificia Universidade Católica, Porto Alegre. This work was submitted in partial fulfilment of the conditions for the degree of Livre Docente by one of us (J. I. K.).  相似文献   

12.
Ruthenium(III) catalyzed oxidation of hexacyanoferrate(II) by periodate in alkaline medium is assumed to occurvia substrate-catalyst complex formation followed by the interaction of oxidant and complex in the rate-limiting stage and yield the products with regeneration of catalyst in the subsequent fast step. The reaction exhibits fractional order in hexacyanoferrate(II) and first-order unity each in oxidant and catalyst. The reaction constants involved in the mechanism are derived.  相似文献   

13.
The thermal decomposition of the ferric and nickel acetate salts has been followed. It was found that the heating rate affects the decomposition steps. For a heating rate of 1 K min–1 the product is either Fe2O3 or NiO. For a higher heating rate the suboxides are obtained and reoxidized again on further heating. The decomposition of the mixed salt is an overlap of the DTA for the separate salts but the decomposition reactions are shifted to lower temperatures.We would like to thank Prof. Dr. N. Afify, Phys. Dept., Fact. Science, Assiut University, for experimental assistance and valuable discussions.  相似文献   

14.
Raman spectroscopy using a hot stage indicates that the intercalation of hexacyanoferrate(II) and (III) in the interlayer space of a Mg, Al hydrotalcites leads to layered solids where the intercalated species is both hexacyanoferrate(II) and (III). Raman spectroscopy shows that depending on the oxidation state of the initial hexacyanoferrate partial oxidation and reduction takes place upon intercalation. For the hexacyanoferrate(III) some partial reduction occurs during synthesis. The symmetry of the hexacyanoferrate decreases from Oh existing for the free anions to D3d in the hexacyanoferrate interlayered hydrotalcite complexes. Hot stage Raman spectroscopy reveals the oxidation of the hexacyanoferrate(II) to hexacyanoferrate(III) in the hydrotalcite interlayer with the removal of the cyanide anions above 250 °C. Thermal treatment causes the loss of CN ions through the observation of a band at 2080 cm−1. The hexacyanoferrate (III) interlayered Mg, Al hydrotalcites decomposes above 150 °C.  相似文献   

15.
Thulium hexacyanoferrate (TmHCF) nanoparticles (NPs) were in situ synthesized within the chitosan film on the electrode surface by a biocatalyzed reaction. The properties of the obtained nanoparticles are characterized with scanning electron microscope (SEM) and energy-dispersive X-ray (EDX). The optimized conditions for the formation of TmHCF NPs were 16 mM Fe(CN)63− and 1.5 mM Tm3+ with an accumulation time of 20 min. Based on process of in situ synthesis of TmHCF NPs, a novel biosensor for glucose was designed, and there is a linear relationship between the current response of TmHCF NPs and glucose concentration. The linear range for glucose detection was 0.02–0.4 mM (r = 0.9975, n = 5) and 0.4–13.6 mM (r = 0.9935, n = 10) and the detection limit was 6 μM at a signal-to-noise ratio of 3.  相似文献   

16.
The present study describes the simple and fast preparation of Cerium (III) hexacyanoferrate (II) (CeHCF) solid nanoparticles at three different water/formamide (%) ratios used as solvent (v/v) (100:0, 80:20, 0:100). CeHCF nanoparticles (Nps) were characterized by fourier transform infrared pectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), zeta potential and cyclic voltammetry (CV). Electrodes modified with CeHCF presented a well-defined redox pair with formal potential (Eo′) of approximately 0.29 V (vs. Ag/AgCl(sat) attributed to the Fe2 +/Fe3+ redox pair in the presence of cerium (III)). The Nps in the three systems investigates, presents a random size distribution to different surface, where most were distributed between 20 and 160 nm. Considering the three investigated systems, only CeHCF-1 (100:0) was sensitive to L-dopamine, presenting a linear signal region as a function of L-dopamine concentrations, with a limit of detection (LD) of 0.125 mmol L−1, limit of quantification (LQ) of 0.419 mmol L−1 and amperometric sensitivity (S) of 148.16 μA mmol L−1.  相似文献   

17.
Thermal decomposition of Cr(NO3)3·9H2O in helium and in synthetic air was studied by means of TG, DTA, EGA and XRD analysis. The dehydration occurs together with decomposition of nitrate(V) groups. Eight distinct stages of reaction were found. Intermediate products of decomposition are hydroxy- and oxynitrates containing chromium in hexa- and trivalent states. The process carried out in helium leads to at about 260°C and in air is formed at about 200°C. The final product of decomposition (>450°C) is Cr2O3, both in helium and in air. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
A TG, DTG and DTA study of three polynuclear coordination compounds,containing Al(III)-Mg(II), namely (NH4)4[Al2Mg(C4O5H4)4(OH)4]?2H2O,(NH4)4[MgAl2(C4H4O6)4(OH)4]?3H2Oand (NH4)2[Al2Mg(C6O7H11)5(OH)5]?3H2O,has been reported together with the associated thermal decomposition mechanismrationalized in terms of intermediate products. As decomposition end-product,magnesium-aluminum spinel is obtained. The values of MgAl2O4mean crystallite size depend on the anionic ligand contained by the precursorcompound, varying in the order: malate (143 Å) ligand contained by theprecursor compound, varying in the order: malate (143 Å)  相似文献   

19.
Complexes of lanthanides(III) (La-Lu) and Y(III) with 3,4,5-trihydroxybenzoic acid (gallic acid) were obtained and their thermal decomposition, IR spectra and solubility in water have been investigated. When heated, the complexes with a general formula Ln(C7H5O5)(C7H4O5nH2O (n=2 for La-Ho and Y: n=0 for Er-Lu) lose their crystallization water and decompose to the oxides Ln2O3, CeO2, Pr6O11, and Tb4O7, except of lanthanum and neodymium complexes, which additionally form stable oxocarbonates such as Ln2O2CO3. The complexes are sparingly soluble in water (0.3·10–5–8.3·10–4 mol dm–3).This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
Mono- and binuclear rubidium-sodium halidothiocyanatobismuthates(III) have been prepared. Thermal, chemical and X-ray analyses were used to establish the thermal decomposition course of these complexes. The pyrolysis occurs in three stages connected with the mass loss and exothermic effects. The decomposition temperatures of the title salts are 190–210°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号