首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Rational self-assembly of hexaniobate Lindqvist-type precursor [HNb6O19]7- with soluble Cu2+ salts utilizing different strategies produces a series of giant polyniobate clusters, namely, (H2en)1.25[Cu(en)2(H2O)]2Cl4[Nb24O72H21.5]7 H2O (1; en: ethylenediamine), [Cu(en)2]3[Cu(en)2(H2O)]9[{H2Nb6O19} subset{[({KNb24O72H10.25}{Cu(en)2})2{Cu3(en)3(H2O)3}{Na1.5Cu1.5(H2O)8}{Cu(en)2}4]6}]144 H2O (2), K12Na4[H23NaO8Cu24(Nb7O22)8]106 H2O (3), and K16Na12[H9Cu25.5O8(Nb7O22)8] 73.5 H2O (4). Their structures were determined and further characterized by single-crystal X-ray diffraction analysis, IR and Raman spectroscopy, thermogravimetric analysis (TGA), and elemental analysis. Structural analyses reveal that compound 2 comprises a giant capsule anion based on a wheel-shaped cluster encapsulating a Lindqvist diprotonated cluster [H2Nb6O19]6- unit, and forms a honeycomb-like structure with the inclusion of Lindqvist-type anions [H2Nb6O19]6- in the holes, whereas 3 and 4 represent an unprecedented giant cube-shaped framework. All the compounds are built from [Nb7O22]9- fundamental building blocks. Solution Raman spectroscopy studies of 2 and 3 reveal that the solid-state structures of these polyniobate cluster anions disassemble and exist in the form of the [Nb6O19]8- unit in solution. Magnetic susceptibility measurement of 3 shows antiferromagnetic coupling interactions between CuII ions with the spin-canting phenomenon.  相似文献   

4.
The reaction of N-(2-hydroxy-5-nitrobenzyl)iminodiethanol (=H3(5-NO2-hbide)) with Mn(OAc)2* 4 H2O in methanol, followed by recrystallization from 1,2-dichloroethane, yielded a wheel-shaped single-molecule magnet (SMM) of [MnII 3MnIII 4(5-NO2-hbide)6].5 C2H4Cl2 (1). In 1, seven manganese ions are linked by six tri-anionic ligands and form the wheel in which the two manganese ions on the rim and the one in the center are MnII and the other four manganese ions are MnIII ions. Powder magnetic susceptibility measurements showed a gradual increase with chimT values as the temperature was lowered, reaching a maximum value of 53.9 emu mol(-1) K. Analyses of magnetic susceptibility data suggested a spin ground state of S=19/2. The zero-field splitting parameters of D and B 0 4 were estimated to be -0.283(1) K and -1.64(1)x10(-5) K, respectively, by high-field EPR measurements (HF-EPR). The anisotropic parameters agreed with those estimated from magnetization and inelastic neutron scattering experiments. AC magnetic susceptibility measurements showed frequency-dependent in- and out-of-phase signals, characteristic data for an SMM, and an Arrhenius plot of the relaxation time gave a re-orientation energy barrier (DeltaE) of 18.1 K and a pre-exponential factor of 1.63x10(-7) s. Magnetization experiments on aligned single crystals below 0.7 K showed a stepped hysteresis loop, confirming the occurrence of quantum tunneling of the on magnetization (QTM). QTM was, on the other hand, suppressed by rapid sweeps of the magnetic field even at 0.5 K. The sweep-rate dependence of the spin flips can be understood by considering the Landau-Zener-Stückelberg (LZS) model.  相似文献   

5.
6.
The ternary alkaline-earth nitridonickelate Ba2[Ni3N2] (Ba2[NiI2Ni0N2]) was prepared by the reaction of mixtures of Ba2N and Ni in nitrogen gas of ambient back-pressure at 1173 K. The crystal structure determined by X-ray single-crystal and powder diffraction methods as well as from neutron diffraction data at various temperatures between 2 and 298 K is orthorhombic (Cmca (no. 64), 298 K: a=715.27(18) pm, b=1032.99(21) pm, c=740.12(20) pm) and provides the first example of a nitridonickelate with a two-dimensional complex anion. The Ni2 atom is described with a split position and the corresponding superstructure variants are investigated by theoretical full-potential nonorthogonal local-orbital calculations (FPLO). The average oxidation state of Ni in Ba2[Ni3N2] is +0.67, the lowest average value observed in nitridonickelates so far. Investigations of the physical properties demonstrate that Ba2[Ni3N2] acts as a "poor" metal with a large resistivity of approximately 2.7 mOmega cm at 300 K and exhibits low-dimensional magnetism with antiferromagnetic ordering at T approximately 90 K. XAS spectra correspond with low-valent Ni states.  相似文献   

7.
8.
Herein, we report the isolation of new heterobimetallic complexes [Ni0.6Pd1.4(EtCS2)4] ( 1 ), [NiPt(EtCS2)4] ( 2 ) and [Pd0.4Pt1.6(EtCS2)4] ( 3 ), which were constructed by using transmetallation procedures. Subsequent oxidation with iodine furnished the MM′X monodimensional chains [Ni0.6Pt1.4(EtCS2)4I] ( 4 ) and [Ni0.1Pd0.3Pt1.6(EtCS2)4I] ( 5 ). The physical properties of these systems were investigated and the chain structures 4 and 5 were found to be reminiscent of the parent [Pt2(EtCS2)4I] species. However, they were more sensitively dependent on the localised nature of the charge on the Ni ion, which caused spontaneous breaking of the conduction bands.  相似文献   

9.
10.
11.
12.
The reaction of Cu(ClO4)2.6-H2O and n-propylamine in methanol gives two high-nuclearity products of well-defined compositions. At amine concentrations greater than seven equivalents compared to copper ion concentration, the system fixes carbon dioxide from air to form the one-dimensional carbamate-bridged coordination polymer, {[Cu(mu2-O,O'-O2CNH(CH2)2CH3)(NH2(CH2)2CH3)3](ClO4)}n ({1-ClO4}n). Lower relative amine concentrations lead to the self-assembly of an octanuclear copper-amine-hydroxide cluster [Cu8(OH)10(NH2(CH2)2CH3)12]6+ (2). Both compounds exhibit unique structures: {1-ClO4}n is the first mu2-O,O'-mono-N-alkylcarbamate-linked coordination polymer and 2 is the largest copper-hydroxide-monodentate amine cluster identified to date. The crystal structures indicate that the size of the n-propyl group is probably crucial for directing the formation of these compounds. Magnetic susceptibility studies indicate very weak antiferromagnetic coupling for 1. The octanuclear cluster 2 displays slightly stronger net antiferromagnetic coupling, despite the presence of a number of Cu-O(H)-Cu angles below the value of about 97 degrees that would normally be expected to yield ferromagnetic coupling.  相似文献   

13.
In the cone conformation calix[4]arenes possess lower-rim polyphenolic pockets that are ideal for the complexation of various transition-metal centres. Reaction of these molecules with manganese salts in the presence of an appropriate base (and in some cases co-ligand) results in the formation of a family of calixarene-supported [Mn(III)(2)Mn(II)(2)] clusters that behave as single-molecule magnets (SMMs). Variation in the alkyl groups present at the upper-rim of the cone allows for the expression of a degree of control over the self-assembly of these SMM building blocks, whilst retaining the general magnetic properties. The presence of various different ligands around the periphery of the magnetic core has some effect over the extended self-assembly of these SMMs.  相似文献   

14.
15.
The reaction of phenylphosphonic acid (PhPO(3)H(2)) with the mixed-valent basic oxo-centered manganese triangle [Mn(3)O(O(2)CCMe(3))(6)(py)(3)] (1; where py=pyridine) in the presence of a suitable base gives four different manganese clusters depending on the identity of the base. The syntheses and structural characterization of [Mn(18)(mu(3)-O)(8)(PhPO(3))(14)(O(2)CCMe(3))(12)(py)(6)(H(2)O)(2)] (2), [Mn(7)(mu(3)-O)(3)(O(3)PPh)(3)(O(2)CCMe(3))(8)(py)(3)] (3), [Mn(9)Na(mu(3)-O)(4)(mu(4)-O)(2)(O(3)PPh)(2)(O(2)CCMe(3))(12)(H(2)O)(2)(H(2)O)(0.67)(Py)(0.33)] (4), and [Mn(13)(mu(3)-O)(8)(OMe)(8)(O(3)PPh)(4)(O(2)CCMe(3))(10)] (5) are described. Complexes 4 and 5 are homovalent Mn(III) cages, while 2 and 3 contain divalent, trivalent, and/or tetravalent ions. All the manganese centers are valence-localized, the octahedral Mn(III) sites being recognizable by marked Jahn-Teller distortions. The magnetic properties of compounds 2-5 have been investigated in the polycrystalline state by magnetic susceptibility and high-field magnetization measurements, which reveal that spin ground states vary from 0< or =S > or =8. AC susceptibility measurements performed on 4 and 5, in the 1.6-10.0 K ranges show the presence of out of AC susceptibility signal (chi(M)') for 4, and an effective energy barrier (U(eff)) for the re-orientation of the magnetization is found to be 17 K, but for 5, the chi(M)' maximum is found to be below 1.5 K.  相似文献   

16.
17.
By using environmentally friendly [Ni(CN)4]2? as a cyanide source, three new heterometallic cyano‐bridged mixed‐valence CuI/CuII coordination polymers with three different electronic configurations (d8–d10), that is, [Cu2Ni(CN)5(H2O)3] ( 1 ), [Cu2Ni(CN)5(pn)H2O] ( 2 ), and [Cu3Ni(CN)6(pn)2] ( 3 , pn=1,2‐propane diamine) have been synthesized by gradually increasing the amount of pn. Compound 1 , which was hydrothermally synthesized in the absence of pn ligand, exhibits the famous 2D Cairo pentagonal tiling, in which the CuI, CuII, and NiII atoms act as trigonal, T‐shaped, and square‐planar nodes, respectively. Notably, there are three water molecules located at the meridianal positions of the octahedrally coordinated CuII atom in compound 1 . A similar reaction, except for the addition of a small amount of pn, generated a similar Cairo pentagonal tiling layer in which two of the water molecules that were located at the meridianal positions of the octahedrally coordinated CuII atom were replaced by a chelating pn group. Another similar hydrothermal reaction, with the addition of a larger amount of pn, yielded compound 3 , which showed a related two‐fold‐interpenetrated (3,4)‐connected 3D framework with an unprecedented {83}2{86} topology in which the CuII atom was chelated by two pn groups. These structural changes between compounds 1 , 2 , 3 can be explained by the chelating effect of the pn group. The replacement of two meridianally coordinated water molecules on the octahedral CuII atom in compound 1 by a pn group gives compound 2 , which shows similar Cairo tiling, and a further increase in the amount of pn results in the formation of the [Cu(NC)2(pn)2] unit and the two‐fold‐interpenetrated 3D framework of compound 3 . The mixed‐valence properties of compounds 1 , 2 , and 3 were confirmed by variable‐temperature magnetic‐susceptibility measurements.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号