首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With a simple and physically intuitive method, first-principles calculations of potential-energy surfaces are performed for excited states in a number of illustrative systems, including dimers (H(2) and NaCl) and gas-surface systems [Cl-Na(100) and Cl(2)-Na(100)]. It is based on density-functional theory and is a generalization of the Delta self-consistent field (DeltaSCF) method, where electron-hole pairs are introduced in order to model excited states, corresponding to internal electron transfers in the considered system. The desired excitations are identified by analysis of calculated electron orbitals, local densities of states, and charge densities. For extended systems, where reliable first-principles methods to account for electronically excited states have so far been scarce, our method is very promising. Calculated results, such as the chemiluminescence of halogen molecules impinging on a alkali-metal surface, and the vertical (5 sigma-->2 pi(*)) excitation within the adsorbed CO molecule on the Pd(111) surface, are in working agreement with those of other studies and experiments.  相似文献   

2.
We show here that an economic basis set can describe nucleic acid base pairs involving the hydrogen bond interactions in density functional calculations. The economic basis set in which the polarization function is added only to oxygen and nitrogen atoms of strong electronegativity can predict reliable geometric structures and dipole moment of nucleic acid base pairs, comparable to those obtained from the basis set of 6-31G* in B3LYP calculations. Combining single point calculations with the standard basis set on the geometric structures optimized by the economic basis set, the present approach has predicted accurate natural bond orbital charge, binding energy, electronegativity, hardness, softness, and electrophilicity index. The principle for basis selection presented in this study can be regarded as a general guideline in the computation of large biological systems with considerably high accuracy and low computational expense.  相似文献   

3.
Minimal basis set SCF calculations are reported for the ground states and positive and negative ions of carbazole and tirnitrofluorenone. For carbazole, wavefunctions for several low-lyng excited states have also been obtained. Methods for surmounting convergence difficulties for these large systems are discussed. Relaxation effects in the calculations of excitations energies are considered and found to be significant. Calculated energies are compared to experimental results.  相似文献   

4.
Bromoiodomethane photodissociation in the low-lying excited states has been characterized using unrestricted Hartree-Fock, configuration-interaction-singles, and complete active space self-consistent field calculations with the SDB-aug-cc-pVTZ, aug-cc-pVTZ, and 3-21g** basis sets. According to the results of the vertical excited energies and oscillator strengths of these low-lying excited states, bond selectivity is predicted. Subsequently, the minimum energy paths of the first excited singlet state and the third excited state for the dissociation reactions were calculated using the complete active space self-consistent field method with 3-21g** basis set. Good agreement is found between the calculations and experimental data. The relationships of excitations, the electronic structures at Franck-Condon points, and bond selectivity are discussed.  相似文献   

5.
Limited CI calculations of vertical excitation energies and oscillator strengths have been performed in the ground state molecular orbital basis set (GSMO) and the excited state ones (ESMO). The absorption and emission spectrum of FNO is rediscussed on the basis of these calculations. The relaxation energy of excited states and the convergence of the CI expansion in the GSMO and ESMO basis sets is discussed.  相似文献   

6.
应用ANO-S基组以及ECP基组在CASSCF理论水平下计算了乙基溴及其阳离子的低能激发态几何构型, 并应用CASPT2方法对动态相关能进行单点能校正. 根据乙基溴基态能量和相应阳离子电子态的能量差对光电子谱(Photoelectron spectrum)的谱线进行了理论指认. 在乙基溴的基态预测几何下, 进行了谐振频率计算, 对各个振动频率进行了理论指认. 计算结果与实验值符合得较好.  相似文献   

7.
It is shown that doubly excited states play an important role in calculations of the optical activity of molecules with well-conjugated electron systems, such as the DNA bases. In some significant cases it is necessary to include a large number of excited states in the configuration interaction (CI ) to obtain a reliable, converging result. A new version of the CNDO/OPTIC method, which includes doubly excited states in the CI , is proposed. As an application, the electric transition moments in different pyrimidines are considered. The calculated results agree with experimental data and results obtained from ab initio calculations and INDO calculations using doubly excited states in the CI .  相似文献   

8.
The singlet and triplet excited states of hydrogen cyanide have been computed by using the complete active space self-consistent field and completed active space second order perturbation methods with the atomic natural orbital (ANO-L) basis set. Through calculations of vertical excitation energies, we have probed the transitions from ground state to valence excited states, and further extensions to the Rydberg states are achieved by adding 1s1p1d Rydberg orbitals into the ANO-L basis set. Four singlet and nine triplet excited states have been optimized. The computed adiabatic energies and the vertical transition energies agree well with the available experimental data and the inconsistencies with the available theoretical reports are discussed in detail.  相似文献   

9.
The potential energy curves for the ground and first excited states of some molecules involved in very different problems of theoretical chemistry have been determined employing the pseudopotential (PP) SCF procedure followed by multireference double-excitation configuration interaction treatment (MRD CI). The influence of the choice of the basis set is widely discussed. The PP results are overall in excellent agreement with the results obtained from the analogous all electron (AE) calculations when sufficiently flexible basis sets are adopted. Some small discrepancies encountered are due to the use of minimal basis sets.  相似文献   

10.
We present a theoretical study on the potential energy surface and vibrational bound states of the E electronic excited state of the HeI(2) van der Waals system. The interaction energies are computed using accurate ab initio methods and large basis sets. Relativistic small-core effective core potentials in conjunction with a quintuple-zeta quality basis set are employed for the heavy iodine atoms in multireference configuration interaction calculations for the (3)A' and (3)A" states. For the representation of the potential energy surface we used a general interpolation technique for constructing potential surfaces from ab initio data based on the reproducing kernel Hilbert space method. The surface presents global and local minima for T-shaped configurations with well-depths of 33.2 and 4.6 cm(-1), respectively. Vibrational energies and states are computed through variational quantum mechanical calculations. We found that the binding energy of the HeI(2)(E) T-shaped isomer is 16.85 cm(-1), in excellent agreement with recent experimental measurements. In lieu of more experimental data we also report our predictions on higher vibrational levels and we analyze the influence of the underlying surface on them. This is the first attempt to represent the potential surface of such a highly excited electronic state of a van der Waals complex, and it demonstrates the capability of the ab initio technology to provide accurate results for carrying out reliable studies to model experimental data.  相似文献   

11.
By expanding the atomic wave function in potential harmonics (PH ) and generalized Laguerre functions (GLF ), we derived the recurrence relation of the expansion coefficients and then performed calculations for four He-like three-body systems. In comparison with the complete set calculation (HHGLF ), we find that the errors in eigenenergies introduced by the PHGLF scheme are approximately 0.00033, 0.00025, 0.00022, and 0.00021 au for the ground-state H, He, Li+, and Be2+ systems, respectively, and that for excited states the error is slightly higher and decreases with the grand angular momentum. The present results indicate that the PHGLF scheme is such an efficient means to reduce the degeneracy of the hyperspherical harmonics (HH ) for three-body problems that it can give more satisfactory results than can the HHGLF method with much smaller eigenmatrices. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
We present a new fragment-based scheme to calculate the excited states of large systems without necessity of a Hartree-Fock (HF) solution of the whole system. This method is based on the implementation of the renormalized excitonic method [M. A. Hajj et al., Phys. Rev. B 72, 224412 (2005)] at ab initio level, which assumes that the excitation of the whole system can be expressed by a linear combination of various local excitations. We decomposed the whole system into several blocks and then constructed the effective Hamiltonians for the intra- and inter-block interactions with block canonical molecular orbitals instead of widely used localized molecular orbitals. Accordingly, we avoided the prerequisite HF solution and the localization procedure of the molecular orbitals in the popular local correlation methods. Test calculations were implemented for hydrogen molecule chains at the full configuration interaction, symmetry adapted cluster/symmetry adapted cluster configuration interaction, HF/configuration interaction singles (CIS) levels and more realistic polyene systems at the HF/CIS level. The calculated vertical excitation energies for lowest excited states are in reasonable accordance with those determined by the calculations of the whole systems with traditional methods, showing that our new fragment-based method can give good estimates for low-lying energy spectra of both weak and moderate interaction systems with economic computational costs.  相似文献   

13.
We study the ground-state structures and singlet- and triplet-excited states of the nucleic acid bases by applying the coupled cluster model CC2 in combination with a resolution-of-the-identity approximation for electron interaction integrals. Both basis set effects and the influence of dynamic electron correlation on the molecular structures are elucidated; the latter by comparing CC2 with Hartree-Fock and M?ller-Plesset perturbation theory to second order. Furthermore, we investigate basis set and electron correlation effects on the vertical excitation energies and compare our highest-level results with experiment and other theoretical approaches. It is shown that small basis sets are insufficient for obtaining accurate results for excited states of these molecules and that the CC2 approach to dynamic electron correlation is a reliable and efficient tool for electronic structure calculations on medium-sized molecules.  相似文献   

14.
The authors show that a recently proposed approach [J. Chem. Phys. 123, 084103 (2005)] for the inclusion of geometric constraints in semiclassical initial value representation calculations can be used to obtain excited states of weakly bound complexes. Sample calculations are performed for free and constrained rare gas clusters. The results show that the proposed approach allows the evaluation of excited states with reasonable accuracy when compared to exact basis set calculations.  相似文献   

15.
In this work, the linear response formalism with a triples-corrected CCSD reference wave function, LR-CCSDR(3), is applied to the calculation of vertical excitation energies of singlet states of the F2CO molecule. A basis set of atomic natural orbitals augmented with a series of Rydberg functions has been used in the calculations. A large number of electronically excited states were calculated, and the valence, Rydberg, or mixed character of the states were investigated. In addition, the molecular quantum defect orbital (MQDO) method has been used to determine transition intensities involving Rydberg states. Excitation energies and transition intensities for Rydberg states with n > 3 are reported for the first time.  相似文献   

16.
Interactions in diatomic dimers involving closed-shell metals   总被引:1,自引:0,他引:1  
Interaction energies of dimers containing alkaline earth (Be, Mg, and Ca) metals have been investigated using symmetry-adapted perturbation theory (SAPT) and supermolecular (SM) methods. Also, to enable broader comparisons, some calculations have been performed on the Zn dimer and on the He-Mg dimer. Although all of the investigated metallic atoms have closed electronic shells, the quasidegeneracy of the ground states of these atoms with the lowest-lying excited states leads to convergence problems in theories based on a single-determinant reference state. The main goal of the present work was to establish how the quality of the interaction energies computed using various electronic-structure methods changes across the range of atoms. We show that although the convergence problems become somewhat less severe with the increase of the atomic number, single-determinant-based methods do not provide reliable interaction energies for any of the investigated metallic dimers even at the level of the coupled-cluster method with single, double, and noniterative triple excitations [CCSD(T)]. However, interaction energies accurate to within a few percent can be obtained if CCSD(T) calculations in large basis sets are extrapolated to the complete basis set limit and followed by full configuration interaction (FCI) calculations with a frozen-core (FC) approximation. Since the systems considered contain only two valence electrons, FCI/FC calculations have been feasible for all of them except for Zn2, providing the best theoretical estimates of the binding energies to date. We found that a large part of the error of the SAPT results originates from limiting some exchange components to terms proportional to the squares of the intermonomer orbital overlap integrals. When the neglected terms were approximately accounted for, the accuracy improved significantly and became comparable to that of CCSD(T), allowing us to obtain for the first time a physical interpretation of the interaction energies in metallic dimers.  相似文献   

17.
Time-dependent density functional theory calculations have been performed for the excited states of psoralen, 5-methoxypsoralen, and 8-methoxypsoralen in systems and furan and pyrone monoadducts bonded to a thymine residue. The theoretical assignments to ultraviolet (UV) absorption spectra of isolated systems have been performed. The present calculations have clarified that the excitation energies of the first singlet excited (S1) state of monoadducts are blue-shifted compared with the isolated systems. It is shown that, in particular, the S1 excitation energy of the pyrone monoadduct is significantly blue-shifted and, therefore, the pyrone monoadduct is not excited by UV-A light (300-400 nm), which is used in the photochemotherapy.  相似文献   

18.
The variable metric (VM) method is used to optimize molecular geometry in electronically excited states. A general expression for the first derivative of energy in the particular excited state is derived, considering configuration interaction of all singly excited configurations. A special expression for the excited states energy derivative is given for calculations with semiempirical methods of CNDO type. The geometry optimizations of a set of molecules in various excited states have been carried out by the CNDO/2 method. The results of computations have been discussed and compared with the available experimental data. A good agreement of the calculated geometries with the experimental ones has been shown in the first excited states and a relatively good agreement in the higher states, with some exceptions. Some special features of the proposed method are discussed.  相似文献   

19.
We have performed high‐level electronic structure computations on the most important species of the CHnP systems n = 1–3 to characterize them and provide reliable information about the equilibrium and vibrationally averaged molecular structures, rotational constants, vibrational frequencies (harmonic and anharmonic), formation enthalpies, and vertical excitation energies. Those chemical systems are intermediates for several important reactions and also prototypical phosphorus‐carbon compounds; however, they are often elusive to experimental detection. The present results significantly complement their knowledge and can be used as an assessment of the experimental information when available. The explicitly correlated coupled‐cluster RCCSD(T)‐F12 method has been used for geometry optimizations and vibrational frequency calculations. Vibrational configuration interaction theory has been used to account for anharmonicity effects. Basis‐set limit extrapolations have been carried out to determine accurate thermochemical quantities. Electronic excited states have been calculated with coupled‐cluster approaches and also by means of the multireference configuration interaction method. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Ab initio projected-unrestricted Hartree-Fock calculations have been carried out on a number of excited and ionic states of the water molecule. Results have been compared with large-scale CI calculations, with IVO calculations, and with those of Mrozek and Golebiewski obtained by the 2 × 2 rotation method applied to orbitals. It is concluded that the PUHF method may provide the most useful alternative to large-scale CI for calculating properties of open-shell systems. But it will not be generally useful for calculating spectral transition energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号