首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative myelin water imaging (MWI) from signal T2* decay acquired with multiple Gradient-Recalled Echo (mGRE) sequence has been widely used since its first report. A recent study showed that with low resolution data (2 mm isotropic voxels), direct application of complex fitting to a three-pool WM model with frequency shift terms could produce more stable parameter estimation for myelin water fraction mapping. MWI maps of higher spatial resolution resulting in more detailed tissue structures and reduced partial volume effects around white matter/gray matter (WM/GM) interface, however, is more desirable. Furthermore, as signal-to-noise ratio (SNR) of original images decreases due to reduced voxel size, the direct complex fitting procedure of myelin water imaging becomes more prone to systematic errors which severely compromised stability and reliability of the result. Instead of using the original part of T2* decay, this work presents a new method based on the WM-induced phase from tissue susceptibility calculated with the same mGRE dataset, in a three-pool WM model (water of myelin, axonal and extracellular water), to improve high resolution MWI. Compared with direct complex fitting for the higher spatial resolution case, the proposed method is shown to provide a more stable and accurate estimation of MWI parameters, and finer details near WM/GM boundaries with greatly reduced partial volume effects.  相似文献   

2.
All users of NMR equipment are familiar with the desirability of achieving as high a quality of field as possible. On the other hand, it is easy to forget that the field quality of relevance in both imaging and spectroscopy is that over individual voxels, and not the whole volume. This note demonstrates in practice how performance in poor fields is improved substantially by reducing voxel size (or increasing spatial resolution), offering a potential alternative to additional shimming under appropriate circumstances. It argues that the best criterion for assessing magnet quality in spatially localized systems is the maximum field error gradient in the volume of usable field, rather than the maximum deviation in the field.  相似文献   

3.
A measure of the sharpness of vessel wall interfaces in carotid artery MRI may be useful for assessing the conspicuity of the wall's features. An edge detection technique was used to measure the signal intensity gradients in 2D time-of-flight (2D-TOF) and double-inversion recovery black-blood (DIR-BB) carotid artery images of normal subjects that were acquired at 1.5 T with 0.55 x 0.55 x 2.0-mm (0.6 mm3) acquisition voxels and zero filled to reduce the in-plane reconstructed voxel size by one half in each dimension as well as with 0.27 x 0.27 x 2.0-mm (0.15 mm3) acquisition voxels and at 3.0 T with 0.27 x 0.27 x 2.0-mm (0.15 mm3) acquisition voxels using surface coils. The gradient intensities of the lumen-to-background interface varied closely with the contrast-to-noise ratio of the 2D-TOF imaging. For the DIR-BB imaging, in which higher spatial frequency artery structures are visible, the gradient intensities at the interfaces were higher than theoretically predicted at both field strengths with smaller acquisition voxels. The use of acquisition voxels smaller than those previously used at 1.5 T can improve the visualization of carotid artery structures at 1.5 and 3.0 T with surface coil reception.  相似文献   

4.
A fast proton spectroscopic imaging pulse sequence based on the condition of steady-state free precession is presented. High 3D spatial and temporal resolution is achieved using simultaneous detection of both one spatial and one spectral dimension, with a time-dependent gradient cycle known from echo planar imaging. Additionally, in order to increase the spectral width of the measurement, an interleaved acquisition scheme is shown either for systems with limited gradient switching capabilities or applications with a wide chemical shift range. The pulse sequence is implemented on a standard 4.7-T nuclear magnetic resonance animal imaging system. Measurements with a total measurement time of less than 2.5 min and a nominal voxel size of 6.75 microl using a total of 64 x 32 x 16 voxels are performed on phantoms and healthy rat brain in vivo allowing the rapid detection of signals from both uncoupled and J-coupled spin systems with high signal-to-noise ratio.  相似文献   

5.
While the inherent low sensitivity of in vivo MR spectroscopy motivated a trend towards higher magnetic fields, B(0), it has since become apparent that this increase does not seem to translate into the anticipated improvement in spectral resolution. This is attributed to the decrease of the transverse relaxation time, T(2)*, in vivo due to macro- and mesoscopic tissue susceptibility. Using spectral contrast-to-noise ratio (SCNR) arguments, we show that if in biological systems the linewidth (on the frequency scale) increases linearly with the field, the spectral resolution (in parts per million) improves approximately as the fifth-root of B(0) for chemically shifted lines and decreases as about B(0)(4/5) (in hertz) for a structure of J-coupled multiplets. It is also shown that for any given B(0) there is a unique voxel size that is optimal in spectral resolution, linking the spectral and spatial resolutions. Since in practical applications the spatial resolution may be dictated by the target anatomy, nomograms to determine the B(0) required to achieve the desired spectral resolution at that voxel size are presented. More generally, the scaling of the nomograms to determine the achievable spectral and spatial resolutions at any given field is described.  相似文献   

6.
7.
Spatial Modulation of Magnetization is shown to provide a means of estimating perceived spatial resolution directly in vivo. On the first magnetic resonance system tested, resolution in conventional spin echo images was found to be stability limited in the phase encoding direction and voxel limited (via the Nyquist sampling theorem) in the frequency encoding direction both in vitro and in vivo. As the voxel size approaches half the stripe separation, fringes of resolved and unresolved stripes are formed across the image. This phenomenon is explained and described mathematically. On a second magnetic resonance scanner, resolution in the phase encoding direction of fast spin echo images with centrically ordered phase encoding is shown to be voxel limited in substances with long T2, with poorer resolution in substances with short T2. Resolution in fast spin echo images with linearly ordered phase encoding was shown to be voxel limited in the phase encoding direction.  相似文献   

8.
We study diffuse reflective optical tomography (DROT), aiming at the real-time imaging of the redox state change of the human cerebral cortex with the brain activity. In the uniform voxel size and simple regularization scheme we studied so far, the spatial resolution in the shallow region is unnecessarily good, whereas the noise and the sensitivity in the shallow region are too large to recover the signal in the depth. In this paper, we propose depth-adaptive voxel size reconstruction. By assigning wider lateral voxel size in the deep range, the relative sensitivity in the deep range is increased so that the signal in the deep range would be less masked by the presence of the unwanted target in the shallow range. We demonstrate that we can detect the deep objects without being masked by the shallow object using the proposed method.  相似文献   

9.
MR diffusion tensor imaging (DTI) of the brain and spine provides a unique tool for both visualizing directionality and assessing intactness of white matter fiber tracts in vivo. At the spatial resolution of clinical MRI, much of primate white matter is composed of interdigitating fibers. Analyses based on an assumed single diffusion tensor per voxel yield important information about the average diffusion in the voxel but fail to reveal structure in the presence of crossing tracts. Until today, all clinical scans assume only one tensor, causing potential serious errors in tractography. Since high angular resolution imaging remains, so far, untenable for routine clinical use, a method is proposed whereby the single-tensor field is augmented with additional information gleaned from standard clinical DTI. The method effectively resolves two distinct tract directions within voxels, in which only two tracts are assumed to exist. The underlying constrained two-tensor model is fitted in two stages, utilizing the information present in the single-tensor fit. As a result, the necessary MRI time can be drastically reduced when compared with other approaches, enabling widespread clinical use. Upon evaluation in simulations and application to in vivo human brain DTI data, the method appears to be robust and practical and, if correctly applied, could elucidate tract directions at critical points of uncertainty.  相似文献   

10.
A system capable of in vivo volume selected 1H NMR spectroscopy of voxels as small as 0.2 cm3 is described. Signal-to-noise ratio improvements with probe design and a novel signal steering device are detailed. A high-resolution, image-directed proton spectrum from 0.2 cm3 of a rat's brain at 200 MHz obtained using the SUBMERGE/SPACE pulse sequence is presented. Single-scan voxel shimming was implemented to improve spectral resolution.  相似文献   

11.
代秋声  漆玉金 《物理学报》2010,59(2):1357-1365
针孔单光子发射计算机断层(SPECT)成像的空间分辨率通常是根据Anger经验公式来进行估算,与实际测量存在较大偏差.本文通过对针孔成像的物理过程进行分析,提出了一个近似度更高的计算公式.利用精确的蒙特卡罗方法模拟针孔SPECT成像,采用OSEM(ordered subsets expectation maximization)算法对投影数据进行图像重建,并与模具实验进行比较,验证了理论公式的适用性.同时还讨论了体素尺寸、几何映射获取投影矩阵以及探测器尺寸与成像物体尺寸比值对断层图像空间分辨率的影响.实验结果显示,该理论公式所估算的空间分辨率比实验值平均偏小约10%,而Anger经验公式所估算的空间分辨率比实验值平均偏大约60%.因此,该理论公式能更好地估算针孔SPECT成像的空间分辨率,可为针孔SPECT系统的设计和使用提供有价值的参考.  相似文献   

12.
The nonhuman primate brain study provides important supplemental means for human brain exploration since the two species share close anatomical and functional similarities. MR diffusion tensor imaging (DTI) in human brain has revealed exquisite details of brain structures especially in the brain white matter. However, most previous monkey brain DTI results lack the spatial resolution in comparison to the conventional tracing and postmortem imaging methods, especially when it is acquired in commonly available human MRI scanners of field strength of 3 T or lower. To meet the increasing demands for nonhuman primate DTI studies, we proposed an in vivo high-resolution monkey DTI acquisition protocol that is practically feasible and combined it with an improved postprocessing procedure for a 3-T human scanner. The acquisition protocol, susceptibility distortion correction method with phase reversal acquisition, and postprocessing steps were proved to be effective in our study of rhesus monkeys. Results from diffusion tensor estimations and fiber tractography at 1 x 1 x 1 mm(3) resolution were found to be comparable to previous ex vivo DTI studies with much longer acquisition times. Effects of image resolution were evaluated and it was confirmed that the partial volume effect due to the larger voxel size in low-resolution data biased the diffusion tensor estimation and produced erroneous fiber tractography. Our results suggest that in vivo high-resolution monkey brain DTI can be achieved within practical time, which allows accurate diffusion tensor estimation and fiber tractography in monkey brains, so that the complex anatomical structures within many small but important anatomic structures can be delineated.  相似文献   

13.
Second-phase particles and small porosities are known to favour fatigue crack initiation in high-strength aluminium alloys 2050-T8 and 7050-T7451. Using high-resolution X-ray tomography (320 nm voxel size), with Paganin reconstruction algorithms, the probability that large clusters of particles contain porosities could be measured for the first time in 3D, as well as precise 3D size distributions. Additional holotomography imaging provided improved spatial resolution (50 nm voxel size), allowing to estimate the probability of finding cracked particles in the as-received material state. The extremely precise 3D shape (including cracks) as well as local chemistry of the particles has been determined. This experiment enabled unprecedented 3D identification of detrimental stress risers relevant for fatigue in as-received aluminium alloys.  相似文献   

14.
15.
In diffusion magnetic resonance imaging with high-angular-resolution diffusion imaging, a set of techniques has become available that allows better acquisition and representation of multidirectional diffusion profiles, e.g., in voxels with crossing, branching and kissing fibers. The poor spatial resolution and low signal-to-noise ratio of the data, particularly when acquired under clinical conditions, prevent tractography algorithms from reliably reconstructing complex white matter structures. With cone-beam regularization, an intervoxel smoothing approach has been described, which, in this article, is refined and adapted to fibers with subvoxel bending. By introducing the concept of asymmetric orientation distribution functions (aODFs), we are able to sharpen diffusion profiles of bending fibers and estimate subvoxel curvature. We also propose a deterministic fiber-tracking algorithm that exploits the enhanced resolution of aODFs. The approach is evaluated quantitatively and compared with state-of-the-art noise-suppression techniques in a study with a biological diffusion phantom. Moreover, we present results from an in vivo study in which we demonstrate the method's ability to optimize tractography of bending fiber pathways of optic radiation.  相似文献   

16.
We propose to use three-dimensional spectroscopic imaging (SI) to increase the spectral resolution for biological samples for which strong susceptibility effects (or poor magnetic homogeneity) cause significant line broadening. Due to susceptibility effects (or poor field homogeneity) the SI voxel spectra even from a uniform sample are shifted with respect to each other and much less broadened than the total sample spectrum. Realignment of the spectra from individual voxels prior to their coaddition produces a total-volume spectrum with significantly narrower lines.  相似文献   

17.
Monte Carlo (MC) method is a statistical method for simulating photon propagation in media in the optical molecular imaging field.However,obtaining an accurate result using the method is quite time-consuming,especially because the boundary of the media is complex.A voxel classification method is proposed to reduce the computation cost.All the voxels generated by dividing the media are classified into three types (outside,boundary,and inside) according to the position of the voxel.The classified information is used to determine the relative position of the photon and the intersection between photon path and media boundary in the MC method.The influencing factors and effectiveness of the proposed method are analyzed and validated by simulation experiments.  相似文献   

18.
Nanocarriers prepared from poly(lactide‐co‐glycolide) (PLGA) have broad biomedical applications. Understanding their cellular uptake and distribution requires appropriate visualization in complex biological compartments with high spatial resolution, which cannot be offered by traditional imaging techniques based on fluorescent or radioactive probes. Herein, the encapsulation of gold nanoparticles (GNPs) into PLGA nanoparticles is proposed, which should allow precise spatial visualization in cells using electron microscopy. Available protocols for encapsulating GNPs into polymeric matrices are limited and associated with colloidal instability and low encapsulation efficiency. In this report, the following are described: 1) a facile protocol to functionalize GNPs with PLGA polymer followed by 2) encapsulation of the prepared PLGA‐capped GNPs into PLGA nanocarriers with 100% encapsulation efficiency. The remarkable encapsulation of PLGA‐GNPs into PLGA matrix obeys the general rule in chemistry “like dissolves like” as evident from poor encapsulation of GNPs capped with other polymers. Moreover, it is shown that how the encapsulated gold nanoparticles serve as nanoprobes to visualize PLGA polymeric hosts inside cancer cells at the spatial resolution of the electron microscope. The described methods should be applicable to a wide range of inorganic nanoprobes and provide a new method of labeling pharmaceutical polymeric nanocarriers to understand their biological fate at high spatial resolution.  相似文献   

19.
The performance test is an important and necessary work for the micro-CT (computed tomography) system. The focal spot size of the micro focus X-ray tube is measured. The method of measuring the spatial resolution of micro-CT is introduced. A line-pair resolution of 28.2 lp/mm at the 10% modulation transfer function (MTF) level can be achieved with 14.7 μm spot size, 12.3 μm voxel size and a 25 mm field of view. In addition, a tungsten wire with the diameter of 5 μm can be detected by the system.  相似文献   

20.
Three-dimensional chemical shift imaging (3D CSI) with appropriate data postprocessing can be used as a tool to improve spectral resolution in samples where large susceptibility differences and limited shim capabilities prevent good sample shimming. Data postprocessing is reduced to the realignment of individual 3D voxel spectra. As a result, the line broadening due to the field inhomogeneity over the sample's volume is reduced to the broadening by inhomogeneity within individual voxels. We compared this method with the resolution enhancement by window multiplication. We demonstrated, theoretically and experimentally, that in the presence of large, lower-order gradients, 3D CSI achieves better resolution enhancement with smaller sensitivity losses. An application of the method to a simple biological system is presented as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号