首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the growth and characterization of gold nitride thin films on Si 〈1 0 0〉 substrates at room temperature by reactive pulsed laser ablation. A pure (99.95%) Au target was ablated with KrF excimer laser pulses in nitrogen containing atmosphere (N2 or NH3). The gas ambient pressure was varied in the range 0.1-100 Pa. The morphology of the films was studied by using optical, scanning electron and atomic force microscopy, evidencing compact films with RMS roughness in the range 3.6-35.1 nm, depending on the deposition pressure. Rutherford backscattering spectrometry and energy dispersion spectroscopy (EDS) were used to detect the nitrogen concentration into the films. The EDS nitrogen peak does not decrease in intensity after 2 h annealing at 250 °C. Film resistivity was measured using a four-point probe and resulted in the (4-20) × 10−8 Ω m range, depending on the ambient pressure, to be compared with the value 2.6 × 10−8 Ω m of a pure gold film. Indentation and scratch measurements gave microhardness values of 2-3 GPa and the Young's modulus close to 100 GPa. X-ray photoemission spectra clearly showed the N 1s peak around 400 eV and displaced with respect to N2 phase. All these measurements point to the formation of the gold nitride phase.  相似文献   

2.
We have obtained carbon thin films on silicon and glass substrates with multipulse pulsed laser irradiation of graphite under vacuum (p ≈ 2.6 Pa) using a high-frequency series of nanosecond laser pulses (τ = 85 ns, λ = 1060 nm) with pulse repetition frequency f ≈ 10–20 kHz and laser power density q ≈ 15–40 MW/cm2. We established the optimal laser power density and laser pulse repetition frequency for obtaining amorphous nanostructured diamond-like films.  相似文献   

3.
Amorphous thin films (1 − x)(4GeSe2-Ga2Se3)-xKBr (x = 0, 0.1, 0.2, 0.3) were prepared by the pulsed laser deposition (PLD) technique. The optical parameters were calculated using the Swanepoel method from the optical transmission spectra. The optical band gap () of the studied films increased while the index of refraction decreased when increased the content of KBr. The Tauc slopes were discussed as an indicator of the degree of structural randomness of amorphous semiconductors. The index of refraction decreased and increased after annealing of as-deposited films below the glass transition temperature. The thermal-bleaching and thermal- contraction effects were observed, which are discussed in relation to the reduction in the density of homopolar bonds confirmed by the Raman spectra analysis and the decreased amount of fragments of the as-deposited films, respectively.  相似文献   

4.
Wurtzite zinc oxides films (ZnO) were deposited on silicon (0 0 1) and corning glass substrates using the pulsed laser deposition technique. The laser fluence, target-substrate distance, substrate temperature of 300 °C were fixed while varying oxygen pressures from 2 to 500 Pa were used. It is observed that the structural properties of ZnO films depend strongly on the oxygen pressure and the substrate nature. The film crystallinity improves with decreasing oxygen pressure. At high oxygen pressure, the films are randomly oriented, whereas, at low oxygen pressures they are well oriented along [0 0 1] axis for Si substrates and along [1 0 3] axis for glass substrates. A honeycomb structure is obtained at low oxygen pressures, whereas microcrystalline structures were obtained at high oxygen pressures. The effect of oxygen pressure on film transparency, band gap Eg and Urbach energies was investigated.  相似文献   

5.
Liu DR  Wu KS  Shih MF  Chern MY 《Optics letters》2002,27(17):1549-1551
Thin films of Bi were grown by pulsed laser deposition on glass substrates at room temperature. The thickness and roughness of the films were characterized by grazing-incidence x-ray reflectivity, and the complex refractive indices were measured in the range from 1.5 to 4 eV by spectroscopic ellipsometry. We performed Z-scan measurements to study the third-order optical nonlinearity of the films. It was found that the Bi films exhibited an unusually large nonlinear refractive coefficient, n(I)~1.24x10(-1) cm(2)/kW and nonlinear absorption coefficient, alpha(I)~-3.97 cm/W , at low laser intensity, ~60 kW/cm(2) . This anomaly is believed to have an origin related to melting of the Bi films at the focus spot by the laser beam.  相似文献   

6.
Films of magnetic nanoparticles uniformly mixed with non-magnetic nanoparticles have been produced by ultrashort pulsed laser deposition. These films present innovative characteristics with respect to their counterparts produced by standard techniques, as for example nanosecond laser ablation or sputtering, due to the peculiar shape and preferential distribution of their constituent nanoparticles. In the present investigation, the difficult coalescence among the deposited nanoparticles, specific characteristic of the ultrashort pulsed laser deposition, is particularly stressed for what concerns its effect on the collective magnetic behaviour. In particular, we observed that, even for a significant fraction of magnetic particles, the films exhibit an unusual high remanent magnetization, together with relatively low values of saturation and coercive fields, showing a strong squareness of the hysteresis loops. In perspective, these nanogranular films appear very promising for potential application as permanent magnets and in magnetic recording.  相似文献   

7.
Novel highly c-oriented tungsten-doped zinc oxide (WZO) thin films with 1 wt% were grown by pulsed laser deposition (PLD) technique on corning 1737F glass substrate. The effects of laser energy on the structural, morphological as well as optical transmission properties of the films were studied. The films were highly transparent with average transmittance exceeding 87% in the wavelength region lying between 400 and 2500 nm. X-ray diffraction analysis (XRD) results indicated that the WZO films had c-axis preferred orientation with wurtzite structure. Film thickness and the full width at half maximum (FWHM) of the (0 0 2) peaks of the films were found to be dependent on laser fluence. The composition determined through Rutherford backscattering spectroscopy (RBS) appeared to be independent of the laser fluence. By assuming a direct band gap transition, the band gap values of 3.36, 3.34 and 3.31 eV were obtained for corresponding laser fluence of 1, 1.7 and 2.7 J cm−2, respectively. Compared with the reported undoped ZnO band gap value of 3.37 eV, it is conjectured that the observed low band gap values obtained in this study may be attributable to tungsten incorporation in the films as well as the increase in laser fluence. The high transparency makes the films useful as optical windows while the high band gap values support the idea that the films could be good candidates for optoelectronic applications.  相似文献   

8.
The zirconium oxide (ZrO2) thin films are deposited on Si (100) and quartz substrates at various substrate temperatures (room temperature–973 K) at an optimized oxygen partial pressure of 3×10?2 mbar using pulsed laser deposition technique. The effect of substrate temperature on microstructural, optical and mechanical properties of the films is investigated. The X-ray diffraction studies show that the films deposited at temperatures ≤773 K are monoclinic, while the films deposited at temperatures ≥873 K show both monoclinic and tetragonal phases. Tetragonal phase content increases with the increase of substrate temperatures. The surface morphology and roughness are investigated using atomic force microscope in contact mode. The optical properties of the films show that the refractive indices (at 550 nm) are found to increase from 1.84 to 2.35 as the temperature raises from room temperature (RT) to 973 K. Nanoindentation measurements show that the hardness of the films is 11.8 and 13.7 GPa for the films deposited at 300 and 973 K, respectively.  相似文献   

9.
Indium tin oxide (ITO) thin films (200-400 nm in thickness) have been grown by pulsed laser deposition (PLD) on glass substrates without a post-deposition anneal. The electrical and optical properties of these films have been investigated as a function of substrate temperature and oxygen partial pressure during deposition. Films were deposited at substrate temperatures ranging from room temperature to 300 °C in O2 partial pressures ranging from 0.1 to 100 mTorr. For 300 nm thick ITO films grown at room temperature in oxygen pressure of 10 mTorr, the electrical conductivity was 2.6᎒-3 Q-1cm-1 and the average optical transmittance was 83% in the visible range (400-700 nm). For 300 nm thick ITO films deposited at 300 °C in 10 mTorr of oxygen, the conductivity was 5.2᎒-3 Q-1cm-1 and the average transmittance in the visible range was 87%. Atomic force microscopy (AFM) measurements showed that the RMS surface roughness for the ITO films grown at room temperature was ~7 Å, which is the lowest reported value for the ITO films grown by any film growth technique at room temperature.  相似文献   

10.
ZnO thin films with typical c-axis (0 0 2) orientation were successfully deposited on quartz glass substrates by pulse laser ablation of Zn target in oxygen atmosphere at a relatively low temperature range of 100-250 °C. The structural and optical properties of the films were studied. In photoluminescence (PL) spectra at room temperature, single ultraviolet emission (without deep-level emission) was obtained from ZnO film deposited at the temperature of 200 °C. This was attributed to its low intrinsic defects.  相似文献   

11.
Well-crystallized 250 nm-thick SrTiO3 thin films on fused-quartz substrate were prepared by pulsed laser deposition. The band-gap of SrTiO3 thin film by transmittance spectra is equal to 3.50 eV, larger than 3.22 eV for the bulk crystal. The nonlinear optical properties of the films were examined with picosecond pulses at 1.064 μm excitation. A large two-photon absorption (TPA) with absorption coefficient of 87.7 cm/GW was obtained, larger than 51.7 cm/GW for BaTiO3 thin films. The nonlinear refractive index n2 is equal to 5.7×10−10 esu with a negative sign, larger than 0.267×10−11 esu for bulk SrTiO3. The large TPA is attributed to intermediate energy levels introduced by the grain boundaries, and the optical limiting behaviors stemming from both TPA and negative nonlinear refraction were also discussed.  相似文献   

12.
Physics of the Solid State - An experimental study of structural and optical properties of silver and gold thin films, as well as bilayer films based on these metals, has been carried out. To study...  相似文献   

13.
The deposition power dependence of visible transmittance and refractive index of room temperature-deposited ZnO:Al thin films by RF magnetron sputtering has been studied. All films exhibited high visible transmittance and near-complete UV absorption. The refractive index of the films decreased continuously with an increase in the RF power at all photon energies in the visible and near-IR region, which has been partially attributed to the decreased packing density of the films. For each film, the refractive index exhibited strong frequency dispersion in the weak-absorption region. The origin of optical dispersion at different RF power has been discussed in the light of a single-oscillator model.  相似文献   

14.
Highly transparent and conducting Chromium doped ZnO (Cr:ZnO) thin films with preferential c-axis orientation were grown on (0 0 0 1) sapphire substrates using buffer assisted pulsed laser deposition. The resistivity of Cr:ZnO thin films was found to decrease to a minimum value of ∼1.13×10−3Ω cm with the increasing Cr concentration up to ∼1.9 at.% and then increase with further increase of Cr concentration. On the contrary, the band gap and carrier concentration of Cr:ZnO thin films increased up to ∼3.37 eV and ∼2×1020 cm−3, respectively, with the increase of Cr concentration up to ∼1.9 at.%, then decreased with further increase of Cr concentration. The increase of carrier concentration and conductivity with Cr doping at low Cr concentrations (<1.9 at.%) could be attributed to the presence of Cr in +3 valence state in ZnO thus acting as donor while decrease of carrier concentration beyond ∼1.9 at.% of Cr concentration could be attributed to the charge compensating effect due to the presence of acceptor like point defects such as oxygen interstitials. This was experimentally confirmed using x-ray photoelectron spectroscopy. The observed variation in the band gap of Cr:ZnO thin films with increasing Cr doping was attributed to the competing effects of the high free carrier concentration induced Burstein-Moss blue shift and band gap narrowing.  相似文献   

15.
Nanocrystalline ZnO thin films were grown by means of pulsed laser deposition. The ablation process was carried out at relatively low background oxygen gas pressure (10 Pa) and by varying the substrate temperature up to 600 °C. Information on the structural and morphological properties of the deposited thin films have been obtained by means of X-ray photoelectron, Raman spectroscopies, X-ray diffraction (XRD) and atomic force microscopy (AFM). The results showed that all the deposited films are sub-stoichiometric in oxygen and with a hexagonal wurtzite crystalline structure, characterized by features of some tens of nanometers in size. An improvement of the films' crystalline quality was observed for the deposition temperature of 300 °C while the further increase of the deposition temperature up to 600 °C induces a worsening of the material's structural properties with the development of a large amount of nanoparticle's clusters. The analysis of the XRD patterns shows a growth crystallographic preferential direction as a function of the deposition temperature, in agreement with the appearance of the only E2 optical phonon mode in the Raman spectra. Such findings are compatible with the changes observed in the photoluminescent (PL) optical response and was related to the modification of the ZnO thin film structural quality.  相似文献   

16.
The magnetic properties of strontium hexaferrite (SrFe12O19) films fabricated by pulsed laser deposition on the Si(100) substrate with Pt(111) underlayer have been studied as a function of film thickness (50–700 nm). X-ray diffraction patterns confirm that the films have c-axis perpendicular orientation. The coercivities in perpendicular direction are higher than those for in-plane direction which indicates the films have perpendicular magnetic anisotropy. The coercivity was found to decrease with increasing of thickness, due to the increasing of the grain size and relaxation in lattice strain. The 200 nm thick film exhibits hexagonal shape grains of 150 nm and optimum magnetic properties of Ms=298 emu/cm3 and Hc=2540 Oe.  相似文献   

17.
ZnO thin films were prepared by pulsed laser deposition at room temperature on glass substrates with oxygen pressures of 10-30 Pa. The structural, electrical, and optical properties of ZnO films were studied in detail. ZnO films had an acceptable crystal quality with high c-axis orientation and smooth surface. The resistivity was in the 102 Ω cm order for ZnO films, with the electron concentration of 1016-1017 cm−3. All the films showed a high visible transmittance ∼90% and a high UV absorption about 90-100%. The UV emission ∼390 nm was observed in the photoluminescence spectra. The oxygen pressures in the 10-30 Pa range were suitable for room temperature growth of high-quality ZnO films.  相似文献   

18.
19.
Recently, we proposed an alternative arrangement to traditional on- or off-axis PLD geometries, termed inverse PLD (IPLD) that is capable of producing films of improved surface morphology. Two configurations of this new target-substrate arrangement were developed, namely static and co-rotating IPLD. In the static IPLD configuration, the substrate is stationary with respect to the ablated spot; while in the co-rotating IPLD configuration the substrate is fixed to the target surface and rotates simultaneously with the target, hence offering an appealingly simple approach to homogenize film properties.Here we report the growth of CNx and Ti films, simultaneously deposited in the co-rotating and static IPLD arrangements. The homogeneity of the co-rotating films is described by a thickness inhomogeneity index, which allows for the comparison of films of different lateral dimension. A semi-analytical, semi-numerical model is proposed to derive the radial variation of the growth rate of co-rotating IPLD films from the lateral growth rate distributions measured along the symmetry axes of static IPLD films. The laterally averaged growth rate, LAGR is used to describe how the ambient pressure affects growth in the 0.5-50 Pa domain. As an example, the absolute error between the measured and calculated radial growth rate variation, obtained at 5 Pa, was less than 3%, while the LAGR of CNx layers grown by co-rotating IPLD was predicted with 20% accuracy.  相似文献   

20.
Au nanoparticles with diameters of ca. 15 nm were synthesized according to the well-developed citrate reduction method. It was found that the nanoparticles tended to attach and fuse into each other to form chain-like structures with the removal of the stabilizing agents. UV–Vis absorption and HRTEM characterizations provided solid evidence for the fused features. On the basis of the HRTEM observations, we believed the decreased surface energy as well as the dipole–dipole interaction is responsible for the formation of the chain-like structures. SERS activity investigation indicated that the intensities of the b2-type bands have close relation with the concentration of the probing molecules, which further confirmed the chemical effect character of the b2-type scatterings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号