首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report results of nitrogen and argon adsorption experiments performed at 77.4 and 87.3 K on novel micro/mesoporous silica materials with morphologically different networks of mesopores embedded into microporous matrixes: SE3030 silica with worm-like cylindrical channels of mode diameter of approximately 95 angstroms, KLE silica with cage-like spheroidal pores of ca. 140 angstroms, KLE/IL silica with spheroidal pores of approximately 140 angstroms connected by cylindrical channels of approximately 26 angstroms, and, also for a comparison, on Vycor glass with a disordered network of pores of mode diameter of approximately 70 angstroms. We show that the type of hysteresis loop formed by adsorption/desorption isotherms is determined by different mechanisms of condensation and evaporation and depends upon the shape and size of pores. We demonstrate that adsorption experiments performed with different adsorptives allow for detecting and separating the effects of pore blocking/percolation and cavitation in the course of evaporation. The results confirm that cavitation-controlled evaporation occurs in ink-bottle pores with the neck size smaller than a certain critical value. In this case, the pressure of evaporation does not depend upon the neck size. In pores with larger necks, percolation-controlled evaporation occurs, as observed for nitrogen (at 77.4 K) and argon (at 87.3 K) on porous Vycor glass. We elaborate a novel hybrid nonlocal density functional theory (NLDFT) method for calculations of pore size distributions from adsorption isotherms in the entire range of micro- and mesopores. The NLDFT method, applied to the adsorption branch of the isotherm, takes into account the effect of delayed capillary condensation in pores of different geometries. The pore size data obtained by the NLDFT method for SE3030, KLE, and KLE/IL silicas agree with the data of SANS/SAXS techniques.  相似文献   

2.
In this paper, we present an analysis of argon adsorption in cylindrical pores having amorphous silica structure by means of a nonlocal density functional theory (NLDFT). In the modeling, we account for the radial and longitudinal density distributions, which allow us to consider the interface between the liquidlike and vaporlike fluids separated by a hemispherical meniscus in the canonical ensemble. The Helmholtz free energy of the meniscus was determined as a function of pore diameter. The canonical NLDFT simulations show the details of density rearrangement at the vaporlike and liquidlike spinodal points. The limits of stability of the smallest bridge and the smallest bubble were also determined with the canonical NLDFT. The energy of nucleation as a function of the bulk pressure and the pore diameter was determined with the grand canonical NLDFT using an additional external potential field. It was shown that the experimentally observed reversibility of argon adsorption isotherms at its boiling point up to the pore diameter of 4 nm is possible if the potential barrier of 22kT is overcome due to density fluctuations.  相似文献   

3.
This paper presents a thermodynamic analysis of capillary condensation phenomena in cylindrical pores. Here, we modified the Broekhoff and de Boer (BdB) model for cylindrical pores accounting for the effect of the pore radius on the potential exerted by the pore walls. The new approach incorporates the recently published standard nitrogen and argon adsorption isotherm on nonporous silica LiChrospher Si-1000. The developed model is tested against the nonlocal density functional theory (NLDFT), and the criterion for this comparison is the condensation/evaporation pressure versus the pore diameter. The quantitative agreement between the NLDFT and the refined version of the BdB theory is ascertained for pores larger than 2 nm. The modified BdB theory was applied to the experimental adsorption branch of adsorption isotherms of a number of MCM-41 samples to determine their pore size distributions (PSDs). It was found that the PSDs determined with the new BdB approach coincide with those determined with the NLDFT (also using the experimental adsorption branch). As opposed to the NLDFT, the modified BdB theory is very simple in its utilization and therefore can be used as a convenient tool to obtain PSDs of all mesoporous solids from the analysis of the adsorption branch of adsorption isotherms of any subcritical fluids.  相似文献   

4.
In this paper, we applied a version of the nonlocal density functional theory (NLDFT) accounting radial and longitudinal density distributions to study the adsorption and desorption of argon in finite as well as infinite cylindrical nanopores at 87.3 K. Features that have not been observed before with one-dimensional NLDFT are observed in the analysis of an inhomogeneous fluid along the axis of a finite cylindrical pore using the two-dimensional version of the NLDFT. The phase transition in pore is not strictly vapor-liquid transition as assumed and observed in the conventional version, but rather it exhibits a much elaborated feature with phase transition being complicated by the formation of solid phase. Depending on the pore size, there are more than one phase transition in the adsorption-desorption isotherm. The solid formation in finite pore has been found to be initiated by the presence of the meniscus. Details of the analysis of the extended version of NLDFT will be discussed in the paper.  相似文献   

5.
To examine the nature of the adsorption and desorption branches in hysteretic adsorption isotherms of gases on mesoporous materials, we measured the temperature dependence of the adsorption and desorption isotherms of argon, oxygen, and carbon dioxide onto MCM-41 with a pore diameter of 4.4 nm. The results clearly show that in the open-ended cylindrical pores of MCM-41, capillary condensation rather than evaporation takes place near a thermodynamical equilibrium transition, as opposed to the general statement that capillary evaporation can occur via a meniscus formed at the pore mouth, and, thus, takes place at equilibrium.  相似文献   

6.
This paper reports a molecular simulation study on the adsorption of simple fluids (argon at 77 K) on hydroxylated silica surfaces and nanopores. The effect of surface chemistry is addressed by considering substrates with either partially or fully hydroxylated surfaces. We also investigate the effect of pore shape on adsorption and capillary condensation by comparing the results for cylindrical and hexagonal nanopores having equivalent sections (i.e., equal section areas). Due to the increase in the polarity of the surface with the density of OH groups, the adsorbed amounts for fully hydroxylated surfaces are found to be larger than those for partially hydroxylated surfaces. Both the adsorption isotherms for the cylindrical and hexagonal pores conform to the typical behavior observed in the experiments for adsorption/condensation in cylindrical nanopores MCM-41. Capillary condensation occurs through an irreversible discontinuous transition between the partially filled and the completely filled configurations, while evaporation occurs through the displacement at equilibrium of a hemispherical meniscus along the pore axis. Our data are also used to discuss the effect of surface chemistry and pore shape on the BET method. The BET surface for fully hydroxylated surfaces is much larger (by 10-20%) than the true geometrical surface. In contrast, the BET surface significantly underestimates the true surface when partially hydroxylated surfaces are considered. These results suggest that the surface chemistry and the choice of the system adsorbate/adsorbent is crucial in determining the surface area of solids using the BET method.  相似文献   

7.
We construct an atomistic silica pore model mimicking templated mesoporous silica MCM-41, which has molecular-level surface roughness, with the aid of the electron density profile (EDP) of MCM-41 obtained from X-ray diffraction data. Then, we present the GCMC simulations of argon adsorption on our atomistic silica pore models for two different MCM-41 samples at 75, 80, and 87 K, and the results are compared with the experimental adsorption data. We demonstrate that accurate molecular modeling of the pore structure of MCM-41 by using the experimental EDP allows the prediction of experimental capillary evaporation pressures at all investigated temperatures. The experimental desorption branches of the two MCM-41 samples are in good agreement with equilibrium vapor–liquid transition pressures from the simulations, which suggests that the experimental desorption branch for the open-ended cylindrical pores is in thermodynamic equilibrium.  相似文献   

8.
Argon adsorption (77 K) in atomistic silica nanopores of various sizes and shapes has been studied by means of grand canonical Monte Carlo simulations (GCMC). We discuss the effects of confinement (pore size), pore morphology (ellipsoidal, hexagonal, constricted pore), and surface texture (rough/smooth) on the thickness variation of the adsorbed film with pressure onto the disordered inner surface of porous materials (usually called t-plot or t-curve). We show that no confinement effect occurs when the diameter of the regular cylindrical pore is larger than 10 nm. For pores smaller than 6 nm, we find that the film thickness increases as the pore size decreases. We show that the adsorption isotherm in the rough pore can be described as the sum of an adsorbed amount similar to that found for a smooth pore (of the same radius) and a constant contribution due to atoms "trapped" in the infractuosities of the rough surface which act as a microporous texture. Simulation snapshots for Ar adsorption in hexagonal and ellipsoidal smooth pores indicate that at low pressures the gas/adsorbate interface retains memory of the pore shape and becomes cylindrical prior to the capillary condensation of the fluid in the pore. The film thickness in the hexagonal pore is close to that obtained for a cylindrical pore having a similar dimension. By contrast, we find that the film thickness for an ellipsoidal pore is always larger than that for an equivalent cylindrical pore (having the same length and volume but a circular section). We show that this effect strengthens as the pore size decreases and/or the pore asymmetry increases. Ar adsorption in a cylindrical constricted pore shows that the presence of the narrower part considerably modifies the adsorption mechanism. Finally, we report GCMC simulations of Ar adsorption (77 K) on a plane silica reference substrate for different intermolecular potentials. We discuss the effect of the interaction on the shape of the adsorption isotherm and compare our results with experiments.  相似文献   

9.
E. A. Ustinov 《Adsorption》2008,14(2-3):171-179
We analyze argon adsorption isotherms and isosteric heat of adsorption on graphitized and nongraphitized carbon black and silica surfaces by means of nonlocal density functional theory (NLDFT). It is shown that in the case of graphitized carbon black the behavior of the adsorbed phase is nearly identical to that in the bulk phase at a distance larger than about 3-4 molecular diameters from the surface. At a smaller distance argon forms solid-like molecular layers at a temperature at least 3.5 K above the triple point, with the interlayer distance being markedly smaller than the argon collision diameter. In the case of defected or amorphous surfaces adsorbed argon is liquid-like below its triple point. Our extension of the Tarazona NLDFT to amorphous solids (NLDFT-AS) and the Kierlik and Rosinberg version of NLDFT excellently fit argon adsorption isotherms and properly predict the isosteric heat of adsorption. We showed that the surface roughness affects the calculated heat of adsorption, which allowed us to adjust the width of the diffuse zone of the nongraphitized carbon black and the silica surface.  相似文献   

10.
We study by means of Grand Canonical Monte Carlo simulations the condensation and evaporation of argon at 77 K in nanoporous silica media of different morphology or topology. For each porous material, our results are compared with data obtained for regular cylindrical pores. We show that both the filling and emptying mechanisms are significantly affected by the presence of a constriction. The simulation data for a constricted pore closed at one end reproduces the asymmetrical shape of the hysteresis loop that is observed for many real disordered porous materials. The adsorption process is a quasicontinuous mechanism that corresponds to the filling of the different parts of the porous material, cavity, and constriction. In contrast, the desorption branch for this pore closed at one end is brutal because the evaporation of Ar atoms confined in the largest cavity is triggered by the evaporation of the fluid confined in the constriction (which isolates the cavity from the gas reservoir). This evaporation process conforms to the classical picture of "pore blocking effect" proposed by Everett many years ago. We also simulate Ar adsorption in a disordered porous medium, which mimics a Vycor mesoporous silica glass. The adsorption isotherm for this disordered porous material having both topological and morphological defects presents the same features as that for the constricted pore (quasicontinuous adsorption and steep desorption process). However, the larger degree of disorder of the Vycor surface enhances these main characteristics. Finally, we show that the effect of the disorder, topological and/or morphological, leads to a significant lowering of the capillary condensation pressure compared to that for regular cylindrical nanopores. Also, our results suggest that confined fluids isolated from the bulk reservoir evaporate at a pressure driven by the smallest size of the pore.  相似文献   

11.
There has been little, or no, direct testing of theories of gas sorption within particular pores situated amidst a highly inter-connected pore network. The concept of thermodynamically independent pores within networks has also been challenged. In this work, a novel integrated nitrogen sorption and mercury porosimetry technique has been used to deconvolve the condensation and evaporation processes within a specific subset of pores contained within a larger, irregular network. The sizes and geometry of these pores were obtained completely independently of gas sorption, using mercury porosimetry and NMR cryoporometry, respectively. Hence, various theories of capillary condensation, such as the Kelvin equation, the Broeckhoff-de Boer method, Saam-Cole theory, and NLDFT could be directly tested, and the potential influence of any collective network phenomena detected. It was found that, even for a shielded pore, the Cohan equation for a cylindrical meniscus gave rise to the best prediction for the relative pressure of capillary condensation, once the effects of surface chemical heterogeneity on multi-layer build-up had been taken into account. The results were also found to be incompatible with the presence of particular collective adsorption effects, such as advanced condensation.  相似文献   

12.
We have analyzed various phenomena that occur in nanopores, focusing on elucidating their key mechanisms, to advance the effective engineering use of nanoporous materials. As ideal experimental systems, molecular simulations can effectively provide information at the molecular level that leads to mechanistic insight. In this short review, several of our recent results are presented. The first topic is the critical point depression of Lennard-Jones fluid in silica slit pores due to finite size effects, studied by our original Monte Carlo (MC) technique. We demonstrate that the first layers of adsorbed molecules in contact with the pore walls act as a “fluid wall” and impose extra finite size effects on the fluid confined in the central portion of the pore. We next present a new kernel for pore size distribution (PSD) analysis, based entirely on molecular simulation, which consists of local isotherms for nitrogen adsorption in carbon slit pores at 77 K. The kernel is obtained by combining grand canonical Monte Carlo (GCMC) method and open pore cell MC method that was developed in the previous study. We show that overall trends of the PSDs of activated carbons calculated with our new kernel and with conventional kernel from non-local density functional theory are nearly the same; however, apparent difference can be seen between them. As the third topic, we apply a free energy analysis method with the aid of GCMC simulations to investigate the gating behavior observed in a porous coordination polymer, and propose a mechanism for the adsorption-induced structural transition based on both the theory of equilibrium and kinetics. Finally, we construct an atomistic silica pore model that mimics MCM-41, which has atomic-level surface roughness, and perform molecular simulations to understand the mechanism of capillary condensation with hysteresis. We calculate the work required for the gas–liquid transition from the simulation data, and show that the adsorption branch with hysteresis for MCM-41 arise from spontaneous capillary condensation from a metastable state.  相似文献   

13.
We discuss the thermodynamics of adsorption of fluids in pores when the solid-fluid interactions lead to partial wetting of the pore walls, a situation encountered, for example, in water adsorption in porous carbons. Our discussion is based on calculations for a lattice gas model of a fluid in a slit pore treated via mean field density functional theory (MFDFT). We calculate contact angles for pore walls as a function of solid-fluid interaction parameter, alpha, in the model, using Young's equation and the interfacial tensions calculated in MFDFT. We consider adsorption and desorption in both infinite pores and in finite length pores in contact with the bulk. In the latter case, contact with the bulk can promote evaporation or condensation, thereby dramatically reducing the width of hysteresis loops. We show how the observed behavior changes with alpha. By using a value of alpha that yields a contact angle of about 85 degrees and maintaining the bulk fluid in a supersaturated vapor state on adsorption, we find an adsorption/desorption isotherm qualitatively similar to those for graphitized carbon black where pore condensation occurs at supersaturated bulk vapor states in the spaces between the primary particles of the adsorbent.  相似文献   

14.
Using a grand canonical Monte Carlo simulation, we study argon adsorption in graphitic cylindrical pores to investigate the differences between the isosteric heat and the integral molar enthalpy under subcritical and supercritical conditions and compare these results against those for a flat graphite surface to investigate the role of confinement on the enthalpy change of adsorption. The isosteric heat curve is finite under subcritical conditions, but for supercritical adsorption, it becomes infinite at the pressure where the excess concentration versus pressure is maximum. This can be circumvented using the integral molar enthalpy, which is a better variable to describe the energy change for supercritical adsorption. Finally, the effects of pore geometry (radius and length) on argon adsorption under subcritical and supercritical conditions are discussed.  相似文献   

15.
Using Grand Canonical Monte Carlo simulation, we have studied the effects of confinement on argon and methanol adsorption in graphitic cylindrical and slit pores. Linear chain, zigzag and incomplete helical packing are observed for argon adsorption in cylindrical pores. However, for methanol adsorption different features appear because the electrostatic interactions favour configurations that maximize the hydrogen bonding among methanol molecules. We have found zigzag chains with hydrogen-bonded structures for methanol adsorption in cylindrical and slit pores. To investigate how dense the adsorbed phase is and how many molecules could be packed per unit physical volume of the solid, we consider two different definitions of pore density; one based on the physical volume and the other on the accessible volume. That based on accessible volume gives a measure of the fluid density, while that based on the physical volume gives a measure of how much adsorbate can be stored per unit volume of the adsorbent. It is found that the adsorbate is denser in cylindrical pores, but that slit pores can pack more molecules per unit solid volume. We also discuss the effects on the isosteric heat of argon and methanol of pore size, pore geometry and loading.  相似文献   

16.
The authors use density functional theory in a square gradient approximation to investigate capillary condensation and evaporation in cylindrical channels of finite lengths. The model allows them to systematically explore the effect of the pore's length, width, and surface fields on the location of the transition between "empty" (vapor-filled) and "full" (liquid-filled) states. In general, their results indicate that decreasing the length of the channel drastically reduces the range of pore widths where a transition between liquidlike and vaporlike configurations may be observed. For the wide pores, the transition occurs at very low pressures where the liquid is no longer stable, while for the narrow pores, the transition is hindered by the solid-fluid interactions that favor the vapor phase in lyophobic pores. For the limited range of sizes where the transition can occur, the authors' results confirm the existence of two competing minima that may explain the density oscillations observed in a computer simulation of nanochannels. Comparisons between these results with those generated using a phenomenological model based on the capillary approximation indicate that this simplified approach yields fairly good predictions for medium size pores. However, the capillary approach fails to properly describe the properties of the very small and very large pores.  相似文献   

17.
We present an accurate comparative analysis of N 2 adsorption at 77 K on nonporous silica and the pore wall surface of MCM-41 materials. The analysis shows that in the low-pressure region of N 2 adsorption obeys a peculiar mechanism governed by short-ranged forces, which makes the surface curvature effect on the N 2 adsorption in mesopores nearly negligible. We used this observation to define more exactly compared to the BET technique the specific surface area of the reference adsorption isotherm on nonporous silica basing on XRD data and linear sections of t-plots. Calculation of the capillary evaporation and condensation pressures seems to confirm our previous finding that the capillary condensation pressure corresponds to the equilibrium transition rather than spinodal condensation at least for pore sizes less than 7 nm. It allowed us to provide more reliable pore size distribution (PSD) analysis of mesoporous silica materials. For example, the PSDs of MCM-41 samples do not show artificial peaks in the micropore range that we obtained in our earlier publications.  相似文献   

18.
This paper reports a molecular simulation and experimental study on the adsorption and condensation of simple fluids in mesoporous micelle-templated silicas MCM-41, MCM-48, and SBA-15. MCM-41 is described as a regular cylindrical silica nanopore, while SBA-15 is assumed to be made up of cylindrical nanopores that are connected through lateral channels. The 3D-connected topology of MCM-48 is described using a gyroid periodic minimal surface. Argon adsorption at 77 K is calculated for the three materials using Grand Canonical Monte Carlo simulations. Qualitative comparison with experiments for nitrogen adsorption in mesoporous micelle-templated silicas is made. The adsorption isotherm for SBA-15 resembles that for MCM-41. In particular, capillary condensation and evaporation are not affected by the presence of the connecting lateral channels. In contrast, the argon adsorption isotherm for MCM-48 departs from that for MCM-41 having the same pore size. While condensation in MCM-41 is a one-step process, filling of MCM-48 involves two successive jumps in the adsorbed amounts which correspond to condensation in different domains of the porosity. The condensation pressure for MCM-48 is larger than that for MCM-41. We attribute this result to the morphology of the MCM-48 surface (made up of both concave and convex regions) that differs from that for MCM-41 (concave only). Our results suggest that the pore connectivity affects pore filling when the size of the connections is comparable to that of the nanopores.  相似文献   

19.
In a previous work, we proposed an improvement of the Derjaguin-Broekhoff-de Boer (DBdB) theory for capillary condensation/evaporation in open-ended cylindrical mesopores. In this paper, we report a further extension of this approach to the capillary condensation/evaporation of nitrogen in siliceous spherical cavities. The main idea of this improvement is to employ the Gibbs-Tolman-Koenig-Buff equation to predict the variation of the surface tension in spherical mesopores. In addition, the statistical film thickness (the so-called t-curve), which is evaluated accurately on the basis of adsorption isotherms measured for MCM-41 materials, is used instead of the originally proposed t-curve to take into account the excess chemical potential due to the surface forces. It is shown that the aforementioned modifications of the original DBdB theory that was refined by Ravikovitch and Neimark have significant implications for the pore size analysis of cagelike mesoporous silicas. To verify the proposed improvement of the DBdB pore size analysis (IDBdB), two series of FDU-1 samples, which are well-defined cagelike mesoporous materials (composed of siliceous spherical cavities interconnected by short necks), were used for the evaluation of the pore size distributions (PSDs). The correlation between the spinodal condensation point in the spherical pores predicted by the nonlocal density functional theory (NDFT) developed by Ravikovitch and Neimark and that predicted by the IDBdB theory is very good in the whole range of mesopores. This feature is mirrored to the realistic PSD characterized by the bimodal structure of pores computed from the IDBdB theory. As in the case of open-ended cylindrical pores, the improvement of the classical DBdB theory preserves its simplicity and simultaneously ensures a significant improvement of the pore size analysis, which is confirmed by the independent estimation of the average pore size by the NDFT and the powder X-ray diffraction method.  相似文献   

20.
We study adsorption in pores with curved hard walls that are made of two uniaxial cylinders by using a density functional approach. Two cases are considered: adsorption of hard spheres and adsorption of a Lennard-Jones fluid. In the case of hard spheres, we perform a comparison with the results of grand canonical ensemble Monte Carlo data. This comparison indicates that the applied approach is capable of reproducing the fluid structure quite satisfactorily. For hard spheres, we also make a comparison of the total adsorption effect (expressed as the average density of a confined fluid) inside pores with curved walls with that evaluated for a slitlike pore. We have found that the differences between adsorption in pores with curved walls and in slits with the same wall-to-wall distance are quite low. The calculations for the Lennard-Jones fluid have been concerned with the investigation of the capillary evaporation and with the evaluation of phase diagrams for different pores, including slitlike pores. We have found that the curvature of the pore walls shifts the transition toward lower values of the chemical potential and increases slightly the value of the critical temperature in comparison with the values obtained for a slitlike pore. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号