首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The dititanium-containing 19-tungstodiarsenate(III) [Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)](8-) (1) has been synthesized and characterized by IR, TGA, elemental analysis, electrochemistry, and catalytic studies. Single-crystal X-ray analysis was carried out on Cs(8)[Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)].2CsCl.12H(2)O (Cs-1), which crystallizes in the monoclinic system, space group P2(1)/m, with a=12.7764(19), b=19.425(3), c=18.149(3) A, beta=110.234(3) degrees, and Z=2. Polyanion 1 comprises two (B-alpha-As(III)W(9)O(33)) Keggin moieties linked through an octahedral {WO(5)(H(2)O)} fragment and two unprecedented square-pyramidal {TiO(4)(OH)} groups, leading to a sandwich-type structure with nominal C(2v) symmetry. Synthesis of 1 was accomplished by reaction of TiOSO(4) and K(14)[As(2)W(19)O(67)(H(2)O)] in a 2:1 molar ratio in aqueous, acidic medium (pH 2). Polyanion 1 could also be isolated as a tetra-n-butyl ammonium (TBA) salt, {(n-C(4)H(9))(4)N}(5)H(3)[Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)] (TBA-1). TBA-1 was studied by cyclic voltammetry in acetonitrile (MeCN) solutions containing 0.1 M LiClO(4) and compared with the results obtained with Cs-1 in aqueous media. In MeCN, the Ti(IV) and W(VI) waves could not be separated distinctly. An important adsorption phenomenon on the glassy carbon working electrode was encountered both in cyclic voltammetry and in controlled potential electrolysis and was confirmed by Electrochemical Quartz Crystal Microbalance (EQCM) studies on a carbon film. TBA-1, dissolved in MeCN, reacts with H(2)O(2) to give peroxo complexes stable enough for characterization by UV-visible spectroscopy, cyclic voltammetry, and EQCM. TBA-1 shows high catalytic activity (TOF=11.3 h(-1)) in cyclohexene oxidation with aqueous H(2)O(2) producing products typical of a heterolytic oxidation mechanism. The stability of TBA-1 under turnover conditions was confirmed by using IR, UV-visible spectroscopy as well as cyclic voltammetry.  相似文献   

3.
4.
The electrochemical behavior of the ball-shaped heteropolytungstates [[Sn(CH(3))(2)(H(2)O)](24)[Sn(CH(3))(2)](12)(A-XW(9)O(34))(12)](36-) (X=P, 1; As, 2) was examined in aqueous electrolytes by redissolution of their respective mixed cesium-sodium salts Cs(14)Na(22)[[Sn(CH(3))(2)(H(2)O)](24)[Sn(CH(3))(2)](12) (A-PW(9)O(34))(12)]149 H(2)O (Cs(14)-1) and Cs(14)Na(22)[[Sn(CH(3))(2)(H(2)O)](24)[Sn(CH(3))(2)](12)(A-AsW(9)O(34))(12)]149 H(2)O (Cs(14)-2). In the studied media, Cs(14)-2 is readily soluble in contrast to the significantly less soluble Cs(14)-1. The solubility of Cs(14)-1 is increased by the presence of Li(+) ions in solution. Gel filtration studies with 1 and 2 rule out a decay of the dodecameric spherical assemblies to Keggin-based monomers on the timescale of the experiment. By UV/Vis spectroscopy and cyclic voltammetry, 2 was found to be significantly less stable than 1 and both polyanions also show rather different decomposition pathways. Polyanion 1 collapses first into Keggin-type monomers which might contain the trilacunary [A-alpha-PW(9)O(34)](9-). The final monomeric species obtained from 1 appears to be very similar to [PW(11)O(39)](7-), which is the final transformation product of [A-alpha-PW(9)O(34)](9-) in the same media. In contrast, 2 does not seem to follow an analogous transformation pathway as that of the trilacunary [A-alpha-AsW(9)O(34)](9-). Importantly, stabilization of 1 is observed in chloride media. The fairly long-term stability of 1 in 1 M LiCl, pH 3, has allowed for its electrochemical study to be carried out. The solid-state cyclic voltammogram of 1 entrapped in a carbon paste electrode shows the same characteristics as 1 dissolved in chloride solutions, thus supporting the conclusion that the polyanion is stable in these environments. Controlled potential coulometry on 1 indicates that the number of electrons consumed in the first wave is larger than twenty. To our knowledge, 1 constitutes the first example of a molecule that can take up such a large number of electrons resulting in a chemically reversible W-wave. These properties show promise for future fundamental and applied studies. Polyanion 1 is also efficient in the electrocatalytic reduction of NO(x), including nitrate. Finally, a remarkable interaction was found between 1 and NO, a highly promising feature for biomimetic applications.  相似文献   

5.
The selective oxidation of alkanes as a green process remains a challenging task because partial oxidation is easier to achieve with sacrificial oxidants, such as hydrogen peroxide, alkyl hydroperoxides or iodosylbenzene, than with molecular oxygen or air. Here, we report on a heterogeneous catalyst for n‐hexadecane oxidation comprised of the wheel shaped Cu20‐polyoxotungstate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25? anchored on 3‐aminopropyltriethoxysilane (apts)‐modified SBA‐15. The catalysts were characterized by powder X‐ray diffraction (XRD), N2‐adsorption measurements and Fourier transform infrared reflectance (FT‐IR) spectroscopy. The heterogeneous Cu20‐polyanion system catalyzed the solvent‐free aerobic oxidation of n‐hexadecane to alcohols and ketones by using air as the oxidant under ambient conditions. The catalyst exhibits an exceptionally high turn over frequency (TOF) of 20 000 h?1 at 150 °C and is resistant to poisoning by CS2. Moreover, it can be easily recovered and reused by filtration without loss of its catalytic activity. Possible homogeneous contributions also have been examined and eliminated. Thus, this system can use air as oxidant, which, in combination with its good overall performance and poison tolerance, raises the prospect of this type of heterogeneous catalyst for practical applications.  相似文献   

6.
7.
Syntheses and Crystal Structures of [Pd9As8(PPh2)8] and [Pd9Sb6(PPh3)8] [PdCl2(PPh3)2] reacts with As(SiMe3)3 to give the new cluster [Pd9As8(PPh3)8] ( 4 ). 4 has been characterized by X-ray crystal structure analysis. It is a molecule in which four [Pd2(PPh3)2]-units are bridged by As2-units. A further Pd atom is located in the centre of the cluster. 4 crystallizes in the space group C2/c with four formula units per unit cell. The lattice constants at 200 K are: a = 3 970.6(3), b = 1 648.90(16), c = 3 266.30(20) pm, β = 131,44(4)°. The reaction of [PdCl2(PPh3)2] with Sb(SiMe3)3 yields [Pd9Sb6(PPh3)8] ( 5 ). 5 consists of a body centred cubic Pd9-cluster. All of the cube faces are capped by μ4-Sb-ligands. 5 crystallizes in the space group Pn3 with two formula units per unit cell. The lattice constants at 200 K are: a = b = c = 1 995.4(2) pm.  相似文献   

8.
9.
On an Alkaline-Earth Oxopalladate containing Pd6O12 Rings: CaBa2Pd3O6 CaBa2Pd3O6 was prepared for the first time and investigated by X-ray single crystal technique. It is isotypic to NaBa2Cu3O6 and crystallizes with orthorhombic symmetry, space group D-Fmmm, a = 8.717, b = 11.47, c = 14.933 Å; Z = 2. Typical features of the crystal structure are edge connected square planar PdO4 polygones, forming isolated Pd6O12 rings.  相似文献   

10.
11.
12.
A hydrothermal approach employing an amine as reducing agent enables synthesis of an analogue of the arsenato(iii)-oxovanadate {V(15)As(6)}, representing the first systematic variation of this intensely studied magnetic system.  相似文献   

13.
14.
The first fully inorganic, discrete gold–palladium–oxo complex [NaAuIII4PdII8O8(AsO4)8]11? has been synthesized in aqueous medium. The combination of single‐crystal XRD, elemental analysis, mass spectrometry, and DFT calculations allowed establishing the structure and composition of the novel polyanion, and UV/Vis studies suggest that it is stable in neutral aqueous media.  相似文献   

15.
16.
17.
18.
Aerobic oxidation : Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The results reveal that labile monodentate ligands, such as pyridine, favor a catalyst reoxidation pathway that proceeds via Pd0, rather than direct reaction of O2 with a PdII–hydride intermediate (see scheme).

  相似文献   


19.
20.
Three types of heteropolyvanadates, [(C2H5)4N]4[PdV6O18] (1), [(C2H5)4N]4[Cu2V8O24] (2), and [(C6H5)4P]4[Ni4V10O30(OH)2(H2O)6] (3), were synthesized through the reaction between the [VO3]- anion and metal template cations of Pd(II), Cu(II), and Ni(II). The X-ray crystal structures of 1 (a = 29.952(4) A, b = 12.911(2) A, and c = 13.678(2) A, orthorhombic, space group Pca2(1) with Z = 4), 2 (a = 13.740(1) A, b = 22.488(2) A, c = 18.505(2) A, and beta= 94.058(2) degrees , monoclinic, space group P2(1)/n with Z = 4), and 3 (a = 12.333(2) A, b = 16.208(4) A, c = 16.516(3) A, alpha = 112.438(3) degrees , beta = 94.735(3) degrees , and gamma = 104.749(3) degrees , triclinic, space group P with Z = 1) demonstrate that the metal cationic species induced cyclic [VO3](n-)n (n = 6, 8, 10) ring formation and the cations are incorporated in the rings themselves. In the metal inclusion products, the cyclic vanadates act as macrocyclic ligands, in which the metal cationic species act as the templates. The cyclic vanadate is composed of tetrahedral VO4 units that share corners and incorporates a metal cationic species in the center of the molecules. The bowl-shaped complex 1 includes a Pd2+ cation that is coordinated by the oxygen donors of a boatlike hexavanadate ring. The diamagnetic complex 1 was characterized via 51V and 17O NMR spectroscopy. Complex 2 involves an octavanadate ring and two Cu2+, which are located on both sides of the mean plane as defined by the eight oxygen atoms that bridge the vanadium atoms. In the case of complex 3, the di-mu-hydroxo-bridged Ni2+ dimer with capped Ni2+ aqua ions is formed by hydrolysis to form the decavanadate ring, in which two of the tetrahedral vanadate units are not bonded to the Ni2+ core but supported by hydrogen bonds through the aqua-ligand in the capped Ni2+ cation. Complexes 1-3 in solution were clearly identified by their characteristic isotope patterns using ESI-MS studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号