首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate dynamical transport properties of interacting electrons moving in a vibrating nanoelectromechanical wire in a magnetic field. We have built an exactly solvable model in which the electron-electron interaction is considered nonperturbatively and the electric current and mechanical vibration are treated fully quantum mechanically on an equal footing. We demonstrate our theory by calculating the admittance of a finite-size wire, which is influenced by the magnetic field strength, the electron-electron interaction, and the complex interplay between the mechanical and the electrical energy scales. Nontrivial features including sharp resonance peaks appear in the admittance, which may be experimentally observable.  相似文献   

2.
ABSTRACT

Using statistical model, we study mechanisms of phase separation in a solution consisting of patchy particles, which are capable to form directed and saturated thermoreversible bonds. We focus on the impact of variable reactivity of patchy particles on the form of miscibility gap. We show that the variation of model parameters determining features of interparticle interaction makes it possible to obtain miscibility gaps of different types within the unified formalism. In particular, we uncover two different mechanisms of the formation of phase separation curves with lower critical solution temperature. The first mechanism is realised in the case of positive bonding energy; the second one can takes place when the energy of formation of two-bonded particles is lower than that for all other m-bonded ones. We conclude that the most interesting and non-trivial phase behavior is observed in the case of patchy particles with variable reactivity. Using rigorous statistical model, we uncover new mechanisms of phase separation in a solution consisting of patchy particles, which are capable to form directed and saturated thermoreversible bonds. This topic corresponds to state of the art in modern chemical physics. The results obtained shed light on interplay between features of non-isotropic interactions and phase behavior in both molecular and nanoparticle systems. We conclude that the most interesting and non-trivial phase behavior is observed in the case of patchy particles with variable reactivity.  相似文献   

3.
We study a scenario that a hidden gauge boson constitutes the dominant component of dark matter and decays into the standard model particles through a gauge kinetic mixing. Interestingly, gamma rays and positrons produced from the decay of hidden gauge boson can explain both the EGRET excess of diffuse gamma rays and the HEAT anomaly in the positron fraction. The spectra of the gamma rays and the positrons have distinctive features; the absence of line emission of the gamma ray and a sharp peak in the positron fraction. Such features may be observed by the FGST and PAMELA satellites.  相似文献   

4.
We identify conditions under which correlations resulting from quantum measurements performed on macroscopic systems (systems composed of a number of particles of the order of the Avogadro number) can be described by local realism. We argue that the emergence of local realism at the macroscopic level is caused by an interplay between the monogamous nature of quantum correlations and the fact that macroscopic measurements do not reveal properties of individual particles.  相似文献   

5.
The role of discrete orbital symmetry in mesoscopic physics is manifested in a system consisting of three identical quantum dots forming an equilateral triangle. Under a perpendicular magnetic field, this system demonstrates a unique combination of Kondo and Aharonov-Bohm features due to an interplay between continuous [spin-rotation SU(2)] and discrete (permutation C3v) symmetries, as well as U(1) gauge invariance. The conductance as a function of magnetic flux displays sharp enhancement or complete suppression depending on contact setups.  相似文献   

6.
Hou JG  Wang B  Yang J  Wang K  Lu W  Li Z  Wang H  Chen DM  Zhu Q 《Physical review letters》2003,90(24):246803
Size-selectable ligand-passivated crystalline and amorphous Pd nanoparticles (<4 nm) are synthesized by a novel two-phase process and verified by high-resolution transmission electron microscopy. Scanning tunneling spectroscopy preformed at 5 K on these two types of nanoparticles exhibits clear Coulomb blockade and Coulomb staircases. Size dependent multipeak spectral features in the differential conductance curve are observed for the crystalline Pd particles but not for the amorphous particles. Theoretical analysis shows that these spectral features are related to the quantized electronic states in the crystalline Pd particle. The suppression of the quantum confinement effect in the amorphous particle arises from the reduction of the degeneracy of the eigenstates and the level broadening due to the reduced lifetime of the electronic states.  相似文献   

7.
This communication reports on post-processing of continuous wave EPR spectra by a digital convolution with filter functions that are subjected to differentiation or the Kramers-Kr?nig transform analytically. In case of differentiation, such a procedure improves spectral resolution in the higher harmonics enhancing the relative amplitude of sharp spectral features over the broad lines. At the same time high-frequency noise is suppressed through filtering. These features are illustrated on an example of a Lorentzian filter function that has a principal advantage of adding a known magnitude of homogeneous broadening to the spectral shapes. Such spectral distortion could be easily and accurately accounted for in the consequent least-squares data modeling. Application examples include calculation of higher harmonics from pure absorption echo-detected EPR spectra and resolving small hyperfine coupling that are unnoticeable in conventional first derivative EPR spectra. Another example involves speedy and automatic separation of fast and broad slow-motion components from spin-label EPR spectra without explicit simulation of the slow motion spectrum. The method is illustrated on examples of X-band EPR spectra of partially aggregated membrane peptides.  相似文献   

8.
Theoretical papers predict that prompt LII signals are weakly dependent on the soot size due to the fact that larger particles reach higher temperatures during the heating process by nanosecond laser pulses. This question is of crucial importance for establishing LII as a practical technique for soot volume fraction measurements. In this work two-color prompt LII measurements have been performed in several locations of diffusion and rich premixed ethylene-air flames. The experimental apparatus was carefully designed with a probe volume of uniform light distribution and sharp edges, a 4 ns integration time around the signal pulse peak and narrow spectral bandwidth. Measurements did not confirm the theoretical predictions concerning an increase of temperature for larger particles. On the contrary, larger particles in richer premixed flames exhibit a lower 400/700 signal ratio. This can probably be attributed to small differences in the refractive index of soot.  相似文献   

9.
We discuss the sharp spectral lines emitted by a gas of particles with rest mass m at all temperatures. By treating the problem as fully relativistic we obtain the exact expressions for line shape and total intensity in the two cases where the gas is confined in a box or freely expanding. At all temperatures the Doppler broadening leads to asymmetric shapes with a blue shift of the peak of the line. For relativistic temperatures of the order kT mc2 the line shapes and total intensities are completely different and the free case gives rise to a spectacular increase in total intensity proportional to (4kT/mc2)2. For temperatures of kT > mc2/4 the line shape changes dramatically and for still higher temperatures the infinitely sharp line emitted in the rest frame of the particles gives rise to a black body spectrum.  相似文献   

10.
Owing to the unique ability of nanostructured metals to confine and enhance light waves along metal‐dielectric interfaces, plasmonics has enabled unprecedented flexibility in manipulating light at the deep‐subwavelength scale. With regard to the spectral behavior of plasmonic resonances, the spectral location of a resonance can be tailored with relative ease while the control over the spectral linewidth represents a more daunting task. In this paper, we present sharp resonance features by introducing dark plasmonic modes in diatomic gratings. The induced asymmetry in the metallic structure facilitates the generation of a dark mode with significantly suppressed radiative loss leading to an ultra‐sharp spectral feature ∼5 nm wide. We further use this metallic structure as an optoelectronic platform for the transduction of light waves to electrical signals via a plasmoelectric effect. The light concentrating ability of dark plasmonic modes, in conjunction with the ultra‐sharp resonance feature at a relatively low loss offers a novel route to enhanced light‐matter interactions with high spectral sensitivity for diverse applications.

  相似文献   


11.
We investigate nonlinear one- and two-dimensional photonic crystals by applying a finite element-iterative method. Numerical results show the essential influence of nonlinear elements embedded into a quarter-wave stack and the sharp photonic crystal waveguide bend on the spectral characteristics of these structures. We compare our results with those obtained in [21] from the discrete equation method for the case of a sharp waveguide bend. The comparison shows that neglecting the nonuniform field distribution inside the embedded nonlinear elements leads to overestimation of the waveguide bend transmissivity. PACS 42.65.-k; 42.70.Qs  相似文献   

12.
We present the first observation of spatiospectral control and localization of supercontinuum light through the nonlinear interaction of spectral components in extended periodic structures. We use an array of optical waveguides in a LiNbO3 crystal and employ the interplay between diffraction and nonlinearity to dynamically control the output spectrum of the supercontinuum radiation. This effect presents an efficient scheme for optically tunable spectral filtering of supercontinua.  相似文献   

13.
We present angle-resolved photoemission spectroscopy data on moderately underdoped La1.855Sr0.145CuO4 at temperatures below and above the superconducting transition temperature. Unlike previous studies of this material, we observe sharp spectral peaks along the entire underlying Fermi surface in the superconducting state. These peaks trace out an energy gap that follows a simple d-wave form, with a maximum superconducting gap of 14 meV. Our results are consistent with a single gap picture for the cuprates. Furthermore our data on the even more underdoped sample La1.895Sr0.105CuO4 also show sharp spectral peaks, even at the antinode, with a maximum superconducting gap of 26 meV.  相似文献   

14.
Kinetic oscillations in catalytic reactions on single-crystal surfaces often result from the interplay of the purely chemical reaction steps and adsorbate-induced surface restructuring. A classical example is CO oxidation on Pt(100). We survey evolution of the models used to simulate this reaction and show how it can be described self-consistently by employing Monte Carlo simulations combined with the lattice-gas model, taking into account substrate-substrate, substrate-adsorbate and adsorbate-adsorbate lateral interactions. Under the reactive conditions, this approach predicts formation of mesoscopic restructured well ordered islands with atomically sharp boundaries.  相似文献   

15.
Polarization bremsstrahlung from relativistic electrons moving in a medium consisting of very small crystals oriented at random is studied theoretically. The results of this analysis predict a sharp dependence of the spectral and angular features of the radiation on the crystal dimensions and on the angle of observation. The possibility of developing, on the basis of the phenomena considered in the present study, a newmet hod for studying lowly ordered media is highlighted.  相似文献   

16.
We study the interplay of electron-electron interaction, confining potential and effects of finite temperature at the edge of a quantum Hall liquid. Our exact diagonalization calculation indicates that edge reconstruction occurs in the fractional quantum Hall regime for a variety of confining potential, including ones that correspond to a "sharp" edge. Our finite temperature Hartree-Fock calculation for integer quantum Hall edges indicates that reconstruction is suppressed above a certain temperature. We discuss the implication of our results on recent edge tunneling and microwave absorption experiments.  相似文献   

17.
We studied numerically the enhanced optical transmission (EOT) through periodic subwavelength circular‐sharp hole arrays in metallic films with different edge sharp distribution features of unit structures. Detailed studies indicate that the unit structure edge sharp distribution features strongly influence the surface plasmons (SPs). These results demonstrate that the number of edge sharp activated the localized surface plamons (LSP) resonance on the unit structure is changed by rotating the polarization of the incident light, leading to change the infrared transmittance of the array. Moreover, a compact plasmonic switch via periodic circular‐sharp hole arrays based on the dependence of SPs on unit structural edge sharp distributions is proposed. The finding provides a new idea for designing plasmonics devices, and expands the application range of metal micro‐nano structure in the field of optical communications and information processing.  相似文献   

18.
We present experimental studies of interacting excitable and oscillatory catalytic particles in well-stirred and spatially distributed systems. A number of distinct paths to synchronized oscillatory behavior are described. We present an example of a Kuramoto type transition in a well-stirred system with a collective rhythm emerging on increasing the number density of oscillatory particles. Groups of spatially distributed oscillatory particles become entrained to a common frequency by organizing centers. Quorum sensing type transitions are found in populations of globally and locally coupled excitable particles, with a sharp transition from steady state to fully synchronized behavior at a critical density or group size.  相似文献   

19.
The IR-active vibrational modes of single-walled carbon nanotubes have been observed by optical transmission through thin films of bundled nanotubes. Because IR-active chemical functional groups, e.g., -COOH, -OH, might be attached to the tube walls and contribute additional spectral features, we have also studied the effects of chemical purification and long-term high-temperature vacuum annealing on the IR spectrum. Through comparison with theory, we are able to assign much of the sharp structure observed in our IR spectra.  相似文献   

20.
Many dynamical systems exhibit forward and reverse period-doubling bifurcation sequences, the latter being intrinsically noisy. Feigenbaum has predicted the amplitude of sharp spectral components in the forward sequence from universality arguments. In the same spirit we derive the approximate form of the broad band features in the reverse sequence. Our results give a power-law behavior of the integrated noise spectrum similar to that recently reported by Huberman and Zisook.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号