首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Br?nsted acid catalysis has emerged as a new class of catalysis in modern organic synthesis. However, in order to make the utility of the Br?nsted acid catalysis as broad as the well-developed Lewis acid catalysis, it is desirable to develop Br?nsted acids demonstrating both high reactivities and selectivities. In this feature article, we will present our achievement in the design and development of strong Br?nsted acids and their application to organic reactions. Furthermore, we will describe the Tf(2)NH-catalyzed Mukaiyama aldol reaction of super silyl enol ethers. We also will highlight the differences in reactivity and chemo- and stereo-selectivity between Br?nsted and Lewis acid catalysis.  相似文献   

2.
3.
A binary catalyst system for the enantioselective bromocycloetherification of 5-arylpentenols is described. The combination of an achiral Lewis base and a chiral Br?nsted acid affords good enantioselectivities for the cyclization of Z configured 5-arylpentenols to form bromomethyltetrahydrofurans. The constitutional site selectivity is highly dependent upon the aromatic substituent and the configuration of the double bond.  相似文献   

4.
Nucleophilic addition of sulfonamides and carboxamides to simple alkenes proceeded smoothly using a proton-exchanged montmorillonite catalyst. The spent catalyst was recovered easily from the reaction mixture and was reusable at least five times without any loss of activity. The unique acidity of the proton-exchanged montmorillonite (H-mont) catalyst was found to be applicable to additional reactions: substitution of hydroxyl groups of alcohols with amides and anilines.  相似文献   

5.
6.
7.
8.
9.
10.
Protonation of chiral porous materials introduces a Br?nsted acid centre, the structure of which is unique to the heterogeneous phase requiring pore wall confinement for stable isolation.  相似文献   

11.
12.
The Br?nsted acid catalyzed formal insertion of an isocyanide into a C-O bond of an acetal is described. A diverse array of acyclic and cyclic acetals can be applied to the catalytic insertion to form alpha-alkoxy imidates. Functional groups, such as nitro, cyano, halogen, ester, and alkoxy groups, are tolerant to the reaction conditions employed. The course of the reaction is highly dependent on the structure of the isocyanide. The use of an electron-deficient aryl isocyanide, such as 2c and 2d, is required to selectively obtain the monoinsertion product. When aryl isocyanides containing alkyl substituents, such as 2a and 2b, are employed, two molecules of the isocyanide are incorporated, and the double-insertion product is obtained. The reaction of tert-octyl isocyanide also induces a double incorporation, but the subsequent acid-mediated fragmentation leads to the 2-alkoxy imidoyl cyanide. The monoinsertion products, alpha-alkoxy imidates, can readily be hydrolyzed to alpha-alkoxy esters, realizing the formal carbonylation of an acetal.  相似文献   

13.
14.
15.
Mandelylthiamin (MT) is formally the conjugate of thiamin and benzoylformate. It is the simplified analogue of the first covalent intermediate in benzoylformate decarboxylase. Although MT is the functional equivalent of the enzymic intermediate, it is 106-fold less reactive in decarboxylation. Furthermore, upon loss of carbon dioxide, it undergoes a fragmentation reaction that is about 102-fold faster than the enzymic reaction. While Br?nsted acids in general can suppress the fragmentation to some extent, they do not accelerate the decarboxylation. Surprisingly, the conjugate acid of pyridine accelerates decarboxylation; it also blocks fragmentation with particularly high efficiency. These results are consistent with the conjugate acid of pyridine acting as a "spectator" catalyst, associating with MT prior to decarboxylation. In the absence of catalyst, carbon dioxide formed upon carbon-carbon bond breaking overwhelmingly reverts to the carboxylate. Association of pyridine (and its conjugate acid) with MT permits trapping of the nascent carbanion by protonation, while nonassociated acids must arrive by the relatively slow process of diffusion. C-Alkyl pyridine acids provide similar catalysis while other acids have no effect. This suggests that an enzyme that generates an aldehyde from a 2-ketoacid should have functional Br?nsted acids in their active sites that would trap the carbanion, as does benzoylformate decarboxylase. Enzymes that give nonaldehydic products from decarboxylation of thiamin diphosphate conjugates containing an associated electron acceptor or electrophilic substrate would also be able to prevent the reversal of decarboxylation.  相似文献   

16.
In the presence of a catalytic amount of trifluoromethanesulfonic acid, free carboxylic acids reacted with free thiols directly to afford the corresponding thioesters in high yields.  相似文献   

17.
The chiral Br?nsted acid (1b or 1c) has been shown to initiate the Hosomi-Sakurai reaction of imines with excellent enantioselectivities. The combined Br?nsted acid system has been developed to offer a new class of chiral Br?nsted acid catalysis. The present system proceeds through regeneration of the chiral Br?nsted acid by proton transfer from additional Br?nsted acid to silylated chiral Br?nsted acid, a newly elucidated mechanism for the role of the additional Br?nsted acid.  相似文献   

18.
Enantiomerically pure chiral amines are of increasing importance and commercial value in the fine chemical, pharmaceutical, and agrochemical industries. Here, we describe the straightforward synthesis of chiral amines by combining the atom-economic and environmentally friendly hydroamination of alkynes with an enantioselective hydrogenation of in situ generated imines by using inexpensive hydrogen. By following this novel approach, a wide range of terminal alkynes can be reductively hydroaminated with primary amines including alkyl-, and arylalkynes as well as aryl and heteroaryl amines. Excellent yields and selectivities up to 94?%?ee and 96?% isolated yield were obtained.  相似文献   

19.
o-Benzenedisulfonimide, a new strong bench-stable Br?nsted acid, has been shown to efficiently catalyze the Mukaiyama aldol reaction of aldehydes or dimethyl acetals with silyl enol ethers under mild solvent-free reaction conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号