首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Tensor network representations of many-body quantum systems can be described in terms of quantum channels. We focus on channels associated with the multiscale entanglement renormalization ansatz tensor network that has been recently introduced to efficiently describe critical systems. Our approach allows us to compute the multiscale entanglement renormalization ansatz correspondent to the thermodynamical limit of a critical system introducing a transfer matrix formalism, and to relate the system critical exponents to the convergence rates of the associated channels.  相似文献   

2.
We propose a symmetric version of the multiscale entanglement renormalization ansatz in two spatial dimensions (2D) and use this ansatz to find an unknown ground state of a 2D quantum system. Results in the simple 2D quantum Ising model on the 8x8 square lattice are found to be very accurate even with the smallest nontrivial truncation parameter.  相似文献   

3.
4.
We study the extended Bose-Hubbard model describing an ultracold gas of dipolar molecules in an optical lattice, taking into account all on-site and nearest-neighbor interactions, including occupation-dependent tunneling and pair tunneling terms. Using exact diagonalization and the multiscale entanglement renormalization ansatz, we show that these terms can destroy insulating phases and lead to novel quantum phases. These considerable changes of the phase diagram have to be taken into account in upcoming experiments with dipolar molecules.  相似文献   

5.
We introduce a unified formulation of variational methods for simulating ground state properties of quantum many-body systems. The key feature is a novel variational method over quantum circuits via infinitesimal unitary transformations, inspired by flow equation methods. Variational classes are represented as efficiently contractible unitary networks, including the matrix-product states of density matrix renormalization, multiscale entanglement renormalization (MERA) states, weighted graph states, and quantum cellular automata. In particular, this provides a tool for varying over classes of states, such as MERA, for which so far no efficient way of variation has been known. The scheme is flexible when it comes to hybridizing methods or formulating new ones. We demonstrate the functioning by numerical implementations of MERA, matrix-product states, and a new variational set on benchmarks.  相似文献   

6.
We present a numerical method to simulate the time evolution, according to a generic Hamiltonian made of local interactions, of quantum spin chains and systems alike. The efficiency of the scheme depends on the amount of entanglement involved in the simulated evolution. Numerical analysis indicates that this method can be used, for instance, to efficiently compute time-dependent properties of low-energy dynamics in sufficiently regular but otherwise arbitrary one-dimensional quantum many-body systems. As by-products, we describe two alternatives to the density matrix renormalization group method.  相似文献   

7.
Traditional machine-learning methods are inefficient in capturing chaos in nonlinear dynamical systems, especially when the time difference Δt between consecutive steps is so large that the extracted time series looks apparently random. Here, we introduce a new long-short-term-memory (LSTM)-based recurrent architecture by tensorizing the cell-state-to-state propagation therein, maintaining the long-term memory feature of LSTM, while simultaneously enhancing the learning of short-term nonlinear complexity. We stress that the global minima of training can be most efficiently reached by our tensor structure where all nonlinear terms, up to some polynomial order, are treated explicitly and weighted equally. The efficiency and generality of our architecture are systematically investigated and tested through theoretical analysis and experimental examinations. In our design, we have explicitly used two different many-body entanglement structures—matrix product states (MPS) and the multiscale entanglement renormalization ansatz (MERA)—as physics-inspired tensor decomposition techniques, from which we find that MERA generally performs better than MPS, hence conjecturing that the learnability of chaos is determined not only by the number of free parameters but also the tensor complexity—recognized as how entanglement entropy scales with varying matricization of the tensor.  相似文献   

8.

Tensor network states (TNS) are a powerful approach for the study of strongly correlated quantum matter. The curse of dimensionality is addressed by parametrizing the many-body state in terms of a network of partially contracted tensors. These tensors form a substantially reduced set of effective degrees of freedom. In practical algorithms, functionals like energy expectation values or overlaps are optimized over certain sets of TNS. Concerning algorithmic stability, it is important whether the considered sets are closed because, otherwise, the algorithms may approach a boundary point that is outside the TNS set and tensor elements diverge. We discuss the closedness and geometries of TNS sets, and we propose regularizations for optimization problems on non-closed TNS sets. We show that sets of matrix product states (MPS) with open boundary conditions, tree tensor network states, and the multiscale entanglement renormalization ansatz are always closed, whereas sets of translation-invariant MPS with periodic boundary conditions (PBC), heterogeneous MPS with PBC, and projected entangled pair states are generally not closed. The latter is done using explicit examples like the W state, states that we call two-domain states, and fine-grained versions thereof.

  相似文献   

9.
We introduce string-bond states, a class of states obtained by placing strings of operators on a lattice, which encompasses the relevant states in quantum information. For string-bond states, expectation values of local observables can be computed efficiently using Monte Carlo sampling, making them suitable for a variational algorithm which extends the density matrix renormalization group to higher dimensional and irregular systems. Numerical results demonstrate the applicability of these states to the simulation of many-body systems.  相似文献   

10.
李伟  苏刚 《物理》2012,41(03):172-178
文章简述了数值重正化群方法的历史发展,包括威耳逊(Wilson)的数值重正化群算法,S.R.White的密度矩阵重正化群方法,以及近 期迅速发展的处理强关联量子系统的几种张量网络态与张量网络算法.在此基础上,文章重点介绍了作者最近提出的用于研究量子多体系统热 力学性质的线性张量重正化群方法,以及该方法在一维和二维量子系统中的应用.  相似文献   

11.
During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational cost are given special attention: the orbital choice and ordering, and the exploitation of the symmetry group of the Hamiltonian. With these considerations, the QC-DMRG algorithm allows to find numerically exact solutions in active spaces of up to 40 electrons in 40 orbitals.  相似文献   

12.
李伟  苏刚 《物理》2012,41(3):172-178
文章简述了数值重正化群方法的历史发展,包括威耳逊(Wilson)的数值重正化群算法,S.R.White的密度矩阵重正化群方法,以及近期迅速发展的处理强关联量子系统的几种张量网络态与张量网络算法.在此基础上,文章重点介绍了作者最近提出的用于研究量子多体系统热力学性质的线性张量重正化群方法,以及该方法在一维和二维量子系统中的应用.  相似文献   

13.
We describe a simple real space renormalization group technique for two-dimensional classical lattice models. The approach is similar in spirit to block spin methods, but at the same time it is fundamentally based on the theory of quantum entanglement. In this sense, the technique can be thought of as a classical analogue of the density matrix renormalization group method. We demonstrate the method - which we call the tensor renormalization group method - by computing the magnetization of the triangular lattice Ising model.  相似文献   

14.
We propose a real-space renormalization group (RG) transformation for quantum systems on a D-dimensional lattice. The transformation partially disentangles a block of sites before coarse-graining it into an effective site. Numerical simulations with the ground state of a 1D lattice at criticality show that the resulting coarse-grained sites require a Hilbert space dimension that does not grow with successive RG transformations. As a result we can address, in a quasi-exact way, tens of thousands of quantum spins with a computational effort that scales logarithmically in the system's size. The calculations unveil that ground state entanglement in extended quantum systems is organized in layers corresponding to different length scales. At a quantum critical point, each relevant length scale makes an equivalent contribution to the entanglement of a block.  相似文献   

15.
Tensor network states are used to approximate ground states of local Hamiltonians on a lattice in D spatial dimensions. Different types of tensor network states can be seen to generate different geometries. Matrix product states (MPS) in D=1 dimensions, as well as projected entangled pair states (PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the lattice model; in contrast, the multi-scale entanglement renormalization ansatz (MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on homogeneous tensor networks, where all the tensors in the network are copies of the same tensor, and argue that certain structural properties of the resulting many-body states are preconditioned by the geometry of the tensor network and are therefore largely independent of the choice of variational parameters. Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for D=1 systems is seen to be determined by the structure of geodesics in the physical and holographic geometries, respectively; whereas the asymptotic scaling of entanglement entropy is seen to always obey a simple boundary law—that is, again in the relevant geometry. This geometrical interpretation offers a simple and unifying framework to understand the structural properties of, and helps clarify the relation between, different tensor network states. In addition, it has recently motivated the branching MERA, a generalization of the MERA capable of reproducing violations of the entropic boundary law in D>1 dimensions.  相似文献   

16.
Knowledge of the entanglement properties of the wave functions commonly used to describe quantum many-particle systems can enhance our understanding of their correlation structure and provide new insights into quantum phase transitions that are observed experimentally or predicted theoretically. To illustrate this theme, we first examine the bipartite entanglement contained in the wave functions generated by microscopic many-body theory for the transverse Ising model, a system of Pauli spins on a lattice that exhibits an order-disorder magnetic quantum phase transition under variation of the coupling parameter. Results for the single-site entanglement and measures of two-site bipartite entanglement are obtained for optimal wave functions of Jastrow-Hartree type. Second, we address the nature of bipartite and tripartite entanglement of spins in the ground state of the noninteracting Fermi gas, through analysis of its two- and three-fermion reduced density matrices. The presence of genuine tripartite entanglement is established and characterized by implementation of suitable entanglement witnesses and stabilizer operators. We close with a broader discussion of the relationships between the entanglement properties of strongly interacting systems of identical quantum particles and the dynamical and statistical correlations entering their wave functions.  相似文献   

17.
The Ryu-Takayanagi (RT) formula plays a large role in the current theory of gauge-gravity duality and emergent geometry phenomena. The recent reinterpretation of this formula in terms of a set of “bit threads” is an interesting effort in understanding holography. In this study, we investigate a quantum generalization of the “bit threads” based on a tensor network, with particular focus on the multi-scale entanglement renormalization ansatz (MERA). We demonstrate that, in the large c limit, isometries of the MERA can be regarded as “sources” (or “sinks”) of the information flow, which extensively modifies the original picture of bit threads by introducing a new variable ρ: density of the isometries. In this modified picture of information flow, the isometries can be viewed as generators of the flow. The strong subadditivity and related properties of the entanglement entropy are also obtained in this new picture. The large c limit implies that classical gravity can emerge from the information flow.  相似文献   

18.
We investigate the properties of entanglement and excited-state quantum phase transition (ESQPT) in a hybrid atom-optomechanical system in which an optomechanical quadratic interaction is introduced into a normal Dicke model. Interestingly, by preparing the ancillary mode in a coherent state, both the quantum entanglement and ESQPT can be realized in a relative weak-coupling condition. Moreover, the entanglement is immune to the A2 term, and a reversed trend of the entropy is obtained when the A2 term is included. Density of states (DoS) and Peres lattice are used to investigate ESQPTs. Compared to a normal Dicke model, the DoS enlarges exp(2rα) times if the ancillary mode is prepared in a coherent state. This work is an extension of the ground-state quantum phase transition, which may inspire further exploration of the quantum criticality in many-body systems.  相似文献   

19.
We consider a quantum many-body system made of N interacting S=1/2 spins on a lattice, and develop a formalism which allows to extract, out of conventional magnetic observables, the quantum probabilities for any selected spin pair to be in maximally entangled or factorized two-spin states. This result is used in order to capture the meaning of entanglement properties in terms of magnetic behavior. In particular, we consider the concurrence between two spins and show how its expression extracts information on the presence of bipartite entanglement out of the probability distributions relative to specific sets of two-spin quantum states. We apply the above findings to the antiferromagnetic Heisenberg model in a uniform magnetic field, both on a chain and on a two-leg ladder. Using Quantum Monte Carlo simulations, we obtain the above probability distributions and the associated entanglement, discussing their evolution under application of the field.  相似文献   

20.
In this Letter we show that an arbitrarily good approximation to the propagator e(itH) for a 1D lattice of n quantum spins with Hamiltonian H may be obtained with polynomial computational resources in n and the error epsilon and exponential resources in |t|. Our proof makes use of the finitely correlated state or matrix product state formalism exploited by numerical renormalization group algorithms like the density matrix renormalization group. There are two immediate consequences of this result. The first is that Vidal's time-dependent density matrix renormalization group will require only polynomial resources to simulate 1D quantum spin systems for logarithmic |t|. The second consequence is that continuous-time 1D quantum circuits with logarithmic |t| can be simulated efficiently on a classical computer, despite the fact that, after discretization, such circuits are of polynomial depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号