首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Atomic-scale spin-polarized scanning tunneling microscopy is demonstrated in the case of the unique surface spin structure of Mn3N2(010) at 300 K. We find that the surface spin structure is manifested as a modulation of the normal atomic row height profile. The atomic-scale spin-polarized image is thus shown to contain two components, one the normal, nonpolarized part, and the other the magnetic, spin-polarized part. A method is presented for separating these two spatially correlated components, and the results are compared with simulations based on integrated local spin density of states calculated from first principles.  相似文献   

2.
黄耀清  郝成红  郑继明  任兆玉 《物理学报》2013,62(8):83601-083601
利用过渡金属掺杂的硅基团簇, 构建了一种自旋分子结; 并利用第一性原理方法, 对其电子自旋极化输运性质进行了研究. 计算表明, 通过过渡金属掺杂可以有效地产生自旋极化电流, 磁性金属Fe和非磁性金属Cr和Mn掺杂的体系呈现出较明显的自旋极化透射现象, 但分子结的自旋极化输运能力与团簇孤立状态下的磁矩无一致性.从Sc到Ni的掺杂, 体系的自旋极化透射能力先增大后迅速减小, 在Fe掺杂的Si12团簇中出现最大值. 关键词: 硅团簇 自旋极化输运 密度泛函理论 非平衡格林函数  相似文献   

3.
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) with ferromagnetic GaMnN emitter/collector is investigated theoretically. Two distinct spin splitting peaks can be observed at current-voltage (I-V) characteristics at low temperature. The spin polarization decreases with the temperature due to the thermal effect of electron density of states. When charge polarization effect is considered at the heterostructure, the spin polarization is enhanced significantly. A highly spin-polarized current can be obtained depending on the polarization charge density.  相似文献   

4.
Photoemitted electrons move in a vacuum; their quantum state can be completely characterized in terms of energy, momentum and spin polarization by spin-polarized photoemission experiments. A review article in this issue by Heinzmann and Dil (2012 J. Phys.: Condens. Matter 24 173001) considers whether the measured spin properties, i.e. the magnitude and direction of the spin polarization vector, can be traced back to the quantum state from which these electrons originate. The careful conclusion is that they can, which is highly relevant in view of the current interest in these experiments and their application to topological insulators, where the spin-orbit interaction produces spin-polarized surface states.  相似文献   

5.
Spin-polarized field emissions from Fe pseudomorphic ultrathin films on W(001) surfaces are studied by density functional calculations. We found that nearly completely spin-polarized field emission currents can be realized in two and four Fe layers on W(001) and that these systems have the additional advantages of thermal stability and low work functions. The unusually high spin polarizations of the field emission current is traced to the Fe film's quantum size effects leading to spin-polarized quantum well states and surface resonance states.  相似文献   

6.
Topological materials have unusual surface spin properties including a net surface spin current protected by the bulk symmetry properties. When such materials are reduced to thin films, their gapless spin-polarized surface states must connect, by analytic continuation, to bulk-derived quantum-well states, which are spin-unpolarized in centrosymmetric systems. The nature of this passage in a model system, Sb films, is investigated. Angle-resolved photoemission shows a smooth transition, while calculations elucidate the correlated evolution of the spin and charge distributions in real space.  相似文献   

7.
Using the Keldysh nonequilibrium Green function and equation-of-motion technique, this paper investigates the spin-polarized transport properties of the T-shaped double quantum dots (DQD) coupled to two ferromagnetic leads. There are both Fano effect and Kondo effect in the system, and due to their mutual interaction, the density of states, the current, and the differential conductance of the system depend sensitively on the spin-polarized strength. Thus the obtained results show that this system is provided with excellent spin filtering property, which indicates that this system may be a candidate for spin valve transistors in the spintronics.  相似文献   

8.
The electronic and spin structure of quantum-well and interface states, formed in the system, consisting of bilayer of Bi on 1 ML Ag/W(110) was investigated by angle- and spin- resolved photoelectron spectroscopy. It has been shown that interface states are formed in local surface-projected gap of W(110) and are characterized by spin polarization and spin-orbit splitting, corresponding to surface resonances with high density spin-polarized states near Fermi edge.  相似文献   

9.
Optical orientation of spin-polarized heavy and light holes followed by relaxation to other valence subband states has been observed unambiguously in undoped bulk GaAs in spite of the extremely short spin relaxation time. The measured relaxation time for the heavy holes is 110 fs +/-10%. The results are relevant for applications such as interpretation of spin-polarized transport in semiconductors as well as the assessment of feasibility of hole-based spin-transport devices which relies on precise knowledge of the hole-spin relaxation time.  相似文献   

10.
A new method for generating spin-polarized currents in topological insulators has been proposed and investigated. The method is associated with the spin-dependent asymmetry of the generation of holes at the Fermi level for branches of topological surface states with the opposite spin orientation under the circularly polarized synchrotron radiation. The result of the generation of holes is the formation of compensating spin-polarized currents, the value of which is determined by the concentration of the generated holes and depends on the specific features of the electronic and spin structures of the system. The indicator of the formed spin-polarized current can be a shift of the Fermi edge in the photoelectron spectra upon photoexcitation by synchrotron radiation with the opposite circular polarization. The topological insulators with different stoichiometric compositions (Bi1.5Sb0.5Te1.8Se1.2 and PbBi2Se2Te2) have been investigated. It has been found that there is a correlation in the shifts and generated spin-polarized currents with the specific features of the electronic spin structure. Investigations of the graphene/Pt(111) system have demonstrated the possibility of using this method for other systems with a spin-polarized electronic structure.  相似文献   

11.
The phenomena of spin tunneling and spin torque transfer between magnetic layers of a tunnel spin-valve setup under weak and strong field emissions of spin-polarized electrons are considered. Bifurcational features of changes in the macrospin states under the impact of a tunnel current are discussed for varying directions of the spin-polarization vector.  相似文献   

12.
Electrons in image-potential-induced surface states form a two-dimensional electron gas in front of the surfaces. In the case of ferromagnets, their binding energies as well as lifetimes depend on the orientation of their spin magnetic moment with respect to the magnetization direction. Various experiments with inverse photoemission and two-photon photoemission to detect the spin dependence of image states are reviewed. A new and successful approach to achieve and detect a spin-polarized two-dimensional electron gas is presented, namely polarization-dependent and spin-resolved two-photon photoemission. Additional time resolution opens the way to study spin-dependent electron dynamics.  相似文献   

13.
Evidence is given for the existence of metal-free spin channels in an insulating medium. First-principles calculations indicate the presence of an unpaired spin, in a ground state boron-nitrogen nanostructure with a carbon zig-zag chain generated by the inclusion of a disclination with either negative or positive Gaussian curvature. The spin-polarized states are delocalized on the carbon chain suggesting possible spintronics applications.  相似文献   

14.
We apply an efficient method to calculate spin-polarized scanning tunneling microscopy (SP-STM) images of nanostructures with complex non-collinear magnetic order. The model is based on the spin-polarized version of the Tersoff–Hamann model of STM and the independent orbital approximation for the surface electronic structure. For its application, only the knowledge of the arrangement of the magnetic moments of the surface atoms is required. In spite of its simplifications, calculated SP-STM images of periodic collinear and non-collinear magnetic spin structures are in many cases in excellent agreement with those obtained from computationally much more demanding ab initio calculations. Especially for surfaces of chemically equivalent atoms, the atomic scale SP-STM images are dominated by the magnetic structure and depend much less on the accurate electronic structure. This suggests the application of the method to more complex non-collinear magnetic structures such as domain walls in antiferromagnets, spin-spiral states, spin glasses, or disordered states. Based on the model, we predict SP-STM images of helical spin-spiral states in ultra-thin films. PACS 68.37; 75.70; 75.30  相似文献   

15.
We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that, in the case of incoherent spin states, it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the stationary current, which exhibits topological zeros as a function of the transverse magnetic field.  相似文献   

16.
We theoretically investigate the spin-polarized transport properties of the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We calculate the density of states and the liner conductance in this system with both parallel and antiparallel lead-polarization alignments, and our results show that the transport properties of this system depend on both the tunnelling strength between the two dots and the spin-polarized strength p. This system is a possible candidate for spin valve transistors in the spintronics.  相似文献   

17.
We demonstrate coherent optical control of a single hole spin confined to an InAs/GaAs quantum dot. A superposition of hole-spin states is created by fast (10-100?ps) dissociation of a spin-polarized electron-hole pair. Full control of the hole spin is achieved by combining coherent rotations about two axes: Larmor precession of the hole spin about an external Voigt geometry magnetic field, and rotation about the optical axis due to the geometric phase shift induced by a picosecond laser pulse resonant with the hole-trion transition.  相似文献   

18.
A carbon nanotube (CNT)/zigzag graphene nanoribbons (ZGNRs) junctions has been proposed and investigated by first-principles calculations. The results show that large spin polarization of currents would be achieved when only one edge of ZGNR is coupled to the other lead. By virtue of spatial separation of edge state in two spin channel, one of those channels is opened at certain energy range and gives rise to spin-polarized currents under a low bias. This feature is stable whenever the ZGNR lead is under the antiferromagnetic ground states or is under the ferromagnetic states. Our findings indicate that this approach is simple and efficient for spintronics design.  相似文献   

19.
The electronic structure of Bi(2)Se(3) is studied by angle-resolved photoemission and density functional theory. We show that the instability of the surface electronic properties, observed even in ultrahigh-vacuum conditions, can be overcome via in situ potassium deposition. In addition to accurately setting the carrier concentration, new Rashba-like spin-polarized states are induced, with a tunable, reversible, and highly stable spin splitting. Ab initio slab calculations reveal that these Rashba states are derived from 5-quintuple-layer quantum-well states. While the K-induced potential gradient enhances the spin splitting, this may be present on pristine surfaces due to the symmetry breaking of the vacuum-solid interface.  相似文献   

20.
The energies of Kα X-ray satellite lines of molybdenum ionized to different degrees in the L shell with closed and open outer shells (n=3,4 and 5) are reported in this work. The calculations have been carried out using Xα method with spin-polarized single configuration relativistic Dirac-Fock wavefunctions. Calculations have also been carried out with un-polarized relativistic wavefunctions. The effect of relativistic spin exchange potential on the total energies of the various states ionized to different degrees in the inner and outer shells are analyzed. As the transition assignments in the spin-polarized treatment of atomic orbitals take into account the spin orientations of the electrons in the initial and final states, the present calculations elucidate the significance of this technique in giving unique spin-dependent transition assignments to experimental energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号