首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the direct conversion of laser-cooled 41K and 87Rb atoms into ultracold 41K87Rb molecules in the rovibrational ground state via photoassociation followed by stimulated Raman adiabatic passage. High-resolution spectroscopy based on the coherent transfer revealed the hyperfine structure of weakly bound molecules in an unexplored region. Our results show that a rovibrationally pure sample of ultracold ground-state molecules is achieved via the all-optical association of laser-cooled atoms, opening possibilities to coherently manipulate a wide variety of molecules.  相似文献   

2.
The formation of ultracold metastable RbCs molecules is observed in a double species magneto-optical trap through photoassociation below the 85Rb(5S1/2) + 133Cs(6P3/2) dissociation limit followed by spontaneous emission. The molecules are detected by resonance enhanced two-photon ionization. Using accurate quantum chemistry calculations of the potential energy curves and transition dipole moment, we interpret the observed photoassociation process as occurring at short internuclear distance, in contrast with most previous cold atom photoassociation studies. The vibrational levels excited by photoassociation belong to the 5th 0+ or the 4th 0? electronic states correlated to the Rb(5P1/2, 3/2) + Cs(6S1/2) dissociation limit. The computed vibrational distribution of the produced molecules shows that they are stabilized in deeply bound vibrational states of the lowest triplet state. We also predict that a noticeable fraction of molecules is produced in the lowest level of the electronic ground state.  相似文献   

3.
Using the technique of stimulated Raman adiabatic passage (STIRAP) we have coherently transferred ultracold (87)Rb(2) Feshbach molecules into a more deeply bound vibrational quantum level. Our measurements indicate a high transfer efficiency of up to 87%. Because the molecules are held in an optical lattice with not more than a single molecule per lattice site, inelastic collisions between the molecules are suppressed and we observe long molecular lifetimes of about 1 s. Using STIRAP we have created quantum superpositions of the two molecular states and tested their coherence interferometrically. These results represent an important step towards Bose-Einstein condensation of molecules in the vibrational ground state.  相似文献   

4.
We report the first observation of translationally cold ( approximately 90 &mgr;K) Rb2 molecules. They are produced in a magneto-optical trap in their triplet ground state. The detection is performed by selective mass spectroscopy after two-photon ionization into Rb+2, resonantly enhanced through the intermediate a (3)Sigma(+)(u)-->2 (3)Pi(g) molecular band. The two rubidium isotopes present very different types of behavior that are interpreted in terms of their respective collisional properties.  相似文献   

5.
The effect of triplet-state quenchers on the kinetics of triplet-triplet annihilation (TTA) of Mg-phthalocyanine (Mg-Phc) is studied. It is found that the rate constant of triplet-state quenching caused by TTA increases with increasing concentration [Q] of quenchers. The maximum values of the relaxation parameter of triplet states are proportional to [Q]2. The experimental data correspond to TTA with the formation of TT complexes from molecules in triplet states. The proportionality of the decay rate of TT complexes into molecules in the ground state to [Q]2 suggests that two quenching molecules are required for quenching one TT complex. It seems that the complex contains two locally excited triplet states of individual molecules. The spin correlation time in the triplet state seems to be longer than the average lifetime of complexes (≤10?4 s). The quenching probability of triplet states in complexes (caused, in particular, by the energy of charge transfer) is lower than the probability of intermolecular triplet energy transfer to the quencher levels.  相似文献   

6.
Using resonance-enhanced two-photon ionization, we detect ultracold, metastable RbCs molecules formed in their lowest triplet state a (3)Sigma(+) via photoassociation in a laser-cooled mixture of 85Rb and 133Cs atoms. We obtain extensive bound-bound excitation spectra of these molecules, which provide detailed information about their vibrational distribution, as well as spectroscopic data on several RbCs molecular states including a (3)Sigma(+), (2) (3)Sigma(+), and (1) (1)Pi. Analysis of this data allows us to predict strong transitions from observed levels to the absolute vibronic ground state of RbCs, potentially allowing the production of stable, ultracold polar molecules at rates in excess of 10(6) s(-1).  相似文献   

7.
The interaction of alkali K and Rb atoms that reside in the ground state is considered in the range of collision energies E = 10−4 to 10−2 au. The singlet (X 1Σ+) and triplet (a 3Σ+) interaction potentials available in the literature are analyzed and modified. For the KRb dimer in the range of interatomic distances 15–21a 0, we chose analytical representations of the singlet and triplet potentials that more accurately describe the interaction of alkali Rb and K atoms in the ground state. Complex cross sections of the spin exchange are calculated for the first time that permit one to calculate the processes of polarization transfer and relaxation times, as well as shifts in the magnetic resonance frequencies caused by K-Rb spin exchange collisions.  相似文献   

8.
We have produced ultracold, polar RbCs* molecules via photoassociation in a laser-cooled mixture of Rb and Cs atoms. Using a model of the RbCs* molecular interaction which reproduces the observed rovibrational structure, we infer decay rates in our experiments into deeply bound X(1)Sigma(+) ground-state RbCs vibrational levels as high as 5 x 10(5) s(-1) per level. Population in such deeply bound levels could be efficiently transferred to the vibrational ground state using a single stimulated Raman transition, opening the possibility to create large samples of stable, ultracold polar molecules.  相似文献   

9.
Based on the density functional theory, quantum-chemical calculations of the structure and electronic absorption spectra of the molecules D102, D149, and D205 of an indoline-thiazolidine series, which are used as sensitizers for solar cells, are performed. Circular dichroism spectra are predicted. The mechanisms by which intra- and intermolecular electron transfer occur upon excitation to a triplet state, as well as the relaxation mechanism, are described. The geometric and electronic structures of the molecules under study in the ground singlet and excited triplet states are considered, and the relation between their structure and photochemical properties is discussed.  相似文献   

10.
Ultracold collisions between Cs atoms and Cs2 dimers in the electronic ground state are observed in an optically trapped gas of atoms and molecules. The Cs2 molecules are formed in the triplet ground state by cw photoassociation through the outer well of the 0-(g) (P3/2) excited electronic state. Inelastic atom-molecule collisions converting internal excitation into kinetic energy lead to a loss of Cs2 molecules from the dipole trap. Rate coefficients are determined for collisions involving Cs atoms in either the F=3 or F=4 hyperfine ground state, and Cs2 molecules in either highly vibrationally excited states (nu'=32-47) or in low vibrational states (nu'=4-6) of the a3 summation(u)+ triplet ground state. The rate coefficients beta approximately 10(-10) cm3/s are found to be largely independent of the vibrational and rotational excitation indicating unitary limited cross sections.  相似文献   

11.
Singlet oxygen is used as an important oxidizer for various organic reactions, on the other hand, it has toxicity for the human body, since it destroys biological molecules such as DNA. Fullerene C60 is known to act as a photosensitizer of singlet oxygen molecule, and it has been understood that energy transfer from the excited triplet C60 to the ground triplet O2 forming the singlet O2 is a biologically important reaction. In the present study, we have analyzed these reaction pathways by means of the DFT (density functional theory) calculation.  相似文献   

12.
We have produced ultracold heteronuclear KRb molecules by the process of photoassociation in a two-species magneto-optical trap. Following decay of the photoassociated KRb*, the molecules are detected using two-photon ionization and time-of-flight mass spectroscopy of KRb+. A portion of the metastable triplet molecules thus formed are magnetically trapped. Photoassociative spectra down to 91 cm(-1) below the K(4s)+Rb(5p(1/2)) asymptote have been obtained. We have made assignments to all eight of the attractive Hund's case (c) KRb* potential curves in this spectral region.  相似文献   

13.
Results of investigations of the process of multiphoton excitation of polyatomic molecules by CO2-laser radiation are presented. The mechanism of formation of the profiles of IR absorption bands of polyatomic molecules is discussed. New experimental methods of investigation of relaxation processes at high levels of vibrational excitation of molecules in the ground and triplet states are considered. For vapors of polyatomic molecules and their mixtures with foreign gases, the quantitative characteristics of the collisional exchange and the vibrational-energy transfer as well as the rates of intercombinational conversion ⇛ and triplet-triplet transfer are presented and their dependences on the vibrational-excitation level are discussed. Institute of Molecular and Atomic Physics of the National Academy of Sciences of Belarus, 70, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 5, pp. 675–693, September–October, 1998.  相似文献   

14.
The density functional theory methods (B3LYP and PBE0) and the Möller-Plesset perturbation theory methods of second, third, and fourth orders (MP2, MP3, and MP4) are used to calculate the structure and energy of molecular complexes of benzene with maleimide and water, maleimide dimers in the ground and lowest excited triplet state, and the energies of interaction of the molecules in the complexes. The perturbation theory methods predict the existence of bound states for all the complexes studied. The largest binding energies are obtained for the benzene-maleimide complex, a result that explains why maleimide-based dispersants are used to disintegrate molecular associates of hydrocarbons in petroleum fractions.  相似文献   

15.
本文用荧光法测量Rb(62D)原子与基态Rb原子,H2分子碰撞转移截面。结果表明:Rb(62D)-Rb(52s)转移截面为σfs=67×10-14cm2tr=4.3×10-14cm2,Rb(62D)—H2转移截面为σfs 关键词:  相似文献   

16.
Radiationless energy transfer between like and unlike molecules has been experimentally studied under conditions where acceptor molecules have been excited to the triplet state Homogeneous singlet-triplet-triplet migration has been discovered in highlyconcentrated chlorophyll “a” and pheophytin “a” solutions in castor oil at 183 K by measuring the variation of pigment relative quantum yields of fluorescence and triplet state formation as a function of exciting pulse intensity. Heterogeneous single-triplet-triplet energy transfer has been observed in solid solutions of different complex organic molecules (perylene + phenanthrene, Na-fluorescein+chlorophyll “a”, pyrene+Mg-phthalocyanine) as the fluorescent donor state quenching in the presence of acceptor triplet-excited molecules. Primary emphasis is placed on a direct observation of the effect of energy transfer on the excited-state lifetime of the donor. The benzophenone phosphorescence quenching (shortening of phosphorescence lifetime) in the presence of Mg-mesoporphyrin triplet molecules has been found to be caused by the heterogeneous triplet-triplet-triplet energy transfer. Good agreement of the theoretical and experimental results permits us to conclude that all types of observed transfer processes are described by the Förster-Galanin theory for dipole-dipole radiationless energy transfer with no additional assumptions.  相似文献   

17.
We demonstrate Rabi flopping at MHz rates between ground hyperfine states of neutral 87Rb atoms that are trapped in two micron sized optical traps. Using tightly focused laser beams we demonstrate high fidelity, site specific Rabi rotations with cross talk on neighboring sites separated by 8 microm at the level of 10(-3). Ramsey spectroscopy is used to measure a dephasing time of 870 micros, which is approximately 5000 longer than the time for a pi/2 pulse.  相似文献   

18.
The frequency and temperature dependence of real and imaginary parts of the dielectric constant (ε′,?ε″), the phase shift (?) and the ac-conductivity (σ) of polycrystalline complexes (β-CD)2·BaI7·11H2O and (β-CD)2·CdI7·15H2O (β-CD?=?β-cyclodextrin) has been investigated over the frequency and temperature ranges 0–100?kHz and 140–420?K in combination with their Raman spectra, DSC traces and XRD patterns. The ε′(T), ε″(T) and ?(T) values at frequency 300?Hz in the range T<330?K show two sigmoids, two bell-shaped curves and two minima respectively revealing the existence of two kinds of water molecule, the tightly bound and the easily movable. Both complexes show the transition of normal hydrogen bonds to flip-flop type at 201?K. In the β-Ba complex most of the eleven water molecules remain tightly bound and only a small number of them are easily movable. On the contrary, in the β-Cd case the tightly bound water molecules are transformed gradually to easily movable. Their DSC traces show endothermic peaks with onset temperatures 118°C, 128°C for β-Ba and 106°C, 123°C, 131°C for β-Cd. The peaks 118°C, 106°C, 123°C are related to the easily movable and the tightly bound water molecules, while the peaks at 128°C, 131°C are caused by the sublimation of iodine. The activation energy of Ba2+ ions is 0.52?eV when all the water molecules exist in the sample and 0.99?eV when the easily movable water molecules have been removed. In the case of β-Cd the corresponding activation energies are 0.57?eV and 0.33?eV. The Raman peaks at 179?cm?1, 170?cm?1 and 165–166?cm?1 are due to the charge transfer interactions in the polyiodide chains.  相似文献   

19.
The electrochemical, “steady-state” and “time-resolved” spectroscopic investigations were made on the well-known electron acceptor 9-cyanoanthracene (CNA) when interacted with the electron donors benzotriazole (BZT) and benzimidazole (BMI) molecules. Though electrochemical measurements indicate the thermodynamical possibility of occurrences of photoinduced electron transfer reactions within these reacting systems in the lowest excited singlet state (S1) of the acceptor CNA but the steady-state and time-resolved measurements clearly demonstrate only the triplet-initiated charge separation reactions. It was reported earlier that in the cases of disubstituted indole molecules the occurrences of photoinduced electron transfer reactions were apparent both in the excited singlet and triplet states of the acceptor 9-cyanoanthracene, but the similarly structured present donor molecules benzotriazole (and benzimidazole) behave differently from indoles. The weak ground state complex formations within the presently studied reacting systems appear to be responsible for the observed static quenching phenomena as evidenced from the time-resolved fluorescence studies. Time-resolved spectroscopic investigations demonstrate the formation of the ground state of the reacting components (donor and acceptor) through recombination of triplet ion-pairs via formations of contact neutral radical produced by H-abstraction mechanism.  相似文献   

20.
脉冲激光双光子激发Rb(5S)态到Rb(5D)或Rb(7S)态,在样品池条件下,利用原子荧光光谱方法测量了Rb(7S-5D)-H2,He碰撞能量转移截面与池温的关系.利用三能级模型的速率方程分析.通过测量在不同H2或He密度下的直接荧光与转移荧光的时间积分强度比,在353~493 K温度范围内得到了Rb(7S-5D)-H2,He的反应与非反应碰撞能量转移截面.对于Rb(7S)+H2→Rb(5D)+H2,其转移截面随温度的增加而减小,而其逆过程的转移截面则随温度的增加而增加.对于与He的碰撞,在不同温度下7S-5D的转移截面均符合细致平衡原理,7S,5D态与H2的碰撞速率系数是反应与非反应速率系数之和,利用实验数据可以分别确定反应与非反应截面,7S态的平均反应截面与5D态平均反应截面之比约为1.5.Rb(7S)与H2的反应活动性大于Rb(5D).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号