首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Studies on creating a plasticizer-resistant strengthening composition for fastening highly filled polymeric compositions based on polybutadiene rubber plasticized by transformer oil were carried out. The kinetic rheological regularities of curing the strengthening composition around polyester-urethane rubber with end epoxy-urethane groups were studied, and its physical and mechanical properties, glass transition temperature, the strength of fastening with highly filled polymeric composition and its swelling in transformer oil were determined.  相似文献   

2.
The properties of unsaturated polyketone, which is a representative of new-type reactive oligomers, were studied. It was shown that unsaturated polyketone is compatible with a polar plasticizer (dibutyl phthalate), to some extent compatible with a nonpolar plasticizer (transformer oil), and can be cured by dinitrile oxide and EKh-1 quinol ester. An adhesive composition based on unsaturated polyketone cured by quinol ester and epoxy-containing components was developed. It was established that the adhesive composition based on unsaturated polyketone limitedly swells in transformer oil and has two glass-transition temperatures. The adhesive composition based on unsaturated polyketone provides bonding of a high-filled polymer composition with a rigid multilayered substrate.  相似文献   

3.
Elastomeric blends based on ethylene propylene diene (EPDM) rubber as a primary polymer have been investigated for the thermal insulation of case‐bonded solid rocket motors (SRMs) cast with composite propellant containing hydroxy terminated polybutadiene (HTPB) as a polymeric binder. EPDM rubber found as an attractive candidate for the thermal insulation of case‐bonded SRM due to the advantages such as low specific gravity, improved ageing properties, and longer shelf life. In spite of these advantages, EPDM, a non‐polar rubber, lacks sufficient bonding with the propellant matrix. Bonding properties are found to improve when EPDM is blended with other polar rubbers like polychloroprene, chlorosulphonated polyethylene (CSE), etc. This type of polar polymer when blended with EPDM rubber enhances the insulator‐to‐propellant interface bonding. In the present work, an attempt has been made to study the properties of EPDM–CSE based insulator by incorporating HTPB, a polar polymer as well as a polymeric binder, as an additive to the EPDM–CSE blend by varying the HTPB concentration. Blends prepared were cured and characterized for rheological, mechanical, interface, and thermal properties to study the effect of HTPB addition. This paper reports the preliminary investigation of the properties of EPDM–CSE blend containing HTPB, as a novel and futuristic elastomeric insulation for case‐bonded SRM containing HTPB as propellant binder. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The effect of plasticizer concentration on the stress softening, tear strength and stress relaxation of black loaded bromobutyl rubber vulcanizate has been investigated. The stress softening in the rubber vulcanizate, an energy dissipative process at higher strain, may be explained primarily by changes that take place in the rubber phase of the filled vulcanizate. Increased plasticizer concentration leads to decrease in the equilibrium hysteresis. A quantitative relationship between energy density and hysteresis has been derived, which is applicable at and below the elongation at break. Increase in plasticizer concentration results in decrease in the effective diameter of the tip of the tear, which in turn decreases the tear strength. Rate of relaxation decreases with increase in the plasticizer concentration in the carbon-black-filled vulcanizate.  相似文献   

5.
Hygrothermally decomposed polyester-urethane (HD-PUR) has been added as modifier (up to 20 phr) to sulfur crosslinked carboxylated nitrile rubber (XNBR). The curing and mechanical characteristics of the XNBR have been investigated as a function of the HD-PUR loading in presence and absence of carbon black (CB). The addition of HD-PUR increased the cure rate of both unfilled and CB filled XNBR but resulted in compounds of lower crosslink density and thus of lower stiffness and strength. Based on infrared spectroscopic results it was speculated that the amine functionality of HD-PUR affected the formation of the ionic clusters formed by the reaction between the -COOH groups of XNBR and ZnO. This occurred likely via a coordination complex. Evidence was also found for the formation of -CONH- linkages. Both coordination complexing and chemical reaction between -COOH and -NH2 resulted in a lower overall “crosslinking degree” and as a consequence HD-PUR acted as plasticizer in XNBR.  相似文献   

6.
《先进技术聚合物》2018,29(1):216-225
Rubber magnetic composites were prepared by incorporation of strontium ferrite into rubber compounds based on acrylonitrile butadiene rubber and ethylene propylene diene monomer rubber. The sulfur, peroxide, and mixed sulfur/peroxide curing systems were introduced as cross‐linking agents for rubber matrices. The aim was to investigate the influence of curing system composition on curing process and cross‐link density of composite materials. Then, static and dynamic mechanical properties and thermal and magnetic characteristics were investigated in relation to the cross‐link density of rubber magnetic composites and structure of the formed cross‐links. The changes of dynamical and physicomechanical properties were in close correlation with the change of cross‐link density, whereas the tensile strength of magnetic composites showed increasing trend with increasing amount of peroxide in mixed curing systems. On the other hand, thermal conductivity and magnetic characteristics were found not to be dependent on the curing system composition.  相似文献   

7.
The present investigation focuses on matching cure characteristics of EPDM rubber compound and polyurethane (PU) coating using temperature modulated and pressure differential scanning calorimetry (TMDSC, PDSC). TMDSC provides a detailed and better understanding of the curing process of model rubber system as well as complex automotive rubber compounds. The low level of unsaturation present in EPDM, results in the small heat of vulcanization (2–5 J g–1), which is difficult to accurately measure using conventional differential scanning calorimetry (DSC). Thus, curing of highly filled EPDM compound was investigated using TMDSC. The kinetics of PU curing was monitored using pressure DSC (PDSC), and heat of curing was determined as 4.2 J g–1 at 10°C min–1 heating rate. It is found that complex automotive compounds and the PU coating are curing simultaneously. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The vulcanization bonding process is used in a growing number of industrial applications where rubber-to-metal bonded assemblies are needed. The complexity of this process lies in the fact that the vulcanization of the rubber and curing of an adhesive previously coated on the metallic surface have to take place simultaneously during a single molding step.In the present work, we present an instrumented molding device allowing the production of adhesion peeling test samples under well controlled curing temperature cycles. Tests performed on a model natural rubber compound with a commercial adhesive system show that, for high cure temperatures, the quality of the rubber-to-metal bonding obtained is significantly reduced. The decrease of the peeling energy appears to be inversely proportional to the reversion undergone by the rubber during cure. Such a result points out the necessity of taking into account this phenomenon for optimization of the vulcanization bonding process.  相似文献   

9.
The effect of incorporating sorbic acid (SA), an echo-friendly curing agent, and silica or carbon black (CB) filler, as well as gamma irradiation on the physico-chemical, mechanical and thermal properties of ethylene propylene diene monomer rubber (EPDM) was investigated. The results indicated that the developed composites revealed improvement in the studied parameters over the untreated samples. Filler incorporation into rubber matrix has been proven a key factor in enhancing the swelling resistance, tensile strength and thermal properties of the fabricated composites. The improvement in tensile strength and modulus was attributed to better interfacial bonding via SA. Alternatively, a comparison was established between the performance of the white and black fillers. The utmost mechanical performance was reported for the incorporated ratios 10 phr SA and 40 phr white filler into a 50 kGy irradiated composite. Meanwhile, the incorporation of CB yielded better thermally stable composites than those filled with silica at similar conditions.  相似文献   

10.
Vulcanisation is a process of transforming a plastic rubber compound into a highly elastic product by forming a three-dimensional cross-linked network structure in the rubber matrix. Many systems have been developed to vulcanise rubber compounds, among which sulphur and peroxide curing systems remain the most desirable. The application of sulphur systems leads to the forming of sulphidic cross-links between elastomer chains, while carbon–carbon bonds are formed in peroxidecuring. Both vulcanisation systems provide certain benefits to the cross-linked rubber articles, but also some disadvantages. The present work seeks to provide an overview on both vulcanisation systems; their composition, possibilities of their application, reaction mechanisms, structure of the cross-links formed and the main feature of the final cross-linked materials — vulcanisates.  相似文献   

11.
Rubber magnetic composites were prepared through the incorporation of magnetic soft lithium ferrite into acrylonitrile butadiene rubber. Standard sulfur‐based curing and peroxide curing systems were used for cross‐linking of rubber matrices. The experimental part was focused on the investigation of ferrite content and curing system composition on cross‐link density, physical‐mechanical, magnetic and shielding characteristics of composites. The results demonstrated that cross‐link density and physical‐mechanical properties of composites can be modified by both the amount of ferrite and composition of the curing system. The influence of curing systems on magnetic properties was negligible. It can be stated that the application of lithium ferrite to rubber matrix leads to the preparation of rubber composites with the ability to efficiently absorb harmful electromagnetic radiation in the tested frequency range. The shielding efficiency of composites increased with increasing content of magnetic filler.  相似文献   

12.
In this work, rubber magnetic composites were prepared by incorporation of strontium ferrite into elastomeric matrix based on natural rubber. Cross‐linking of the rubber matrix was performed by using sulfur and peroxide curing system. The study was aimed at the investigation of the type of curing system and magnetic filler content on curing process and cross‐link density of prepared materials. Then, the influence of both factors on physical–mechanical and magnetic properties was observed. The obtained results demonstrate that sulfur‐cured composites show better physical–mechanical properties, especially at lower content of strontium ferrite. With increasing amount of ferrite, the differences between the characteristics of both types of composites became less visible, while peroxide‐cured sample with maximum ferrite content showed superior tensile strength in comparison with tensile strength of maximally filled sample cured with sulfur system. The obtained results demonstrate better compatibility between the rubber and the filler when peroxide system was introduced for cross‐linking of the rubber matrix. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Effects of precipitated silica (PSi) and silica from fly ash (FA) particles (FASi) on the cure and mechanical properties before and after thermal and oil aging of natural rubber (NR) and acrylonitrile–butadiene rubber (NBR) blends with and without chloroprene rubber (CR) or epoxidized NR (ENR) as a compatibilizer have been reported in this paper. The experimental results suggested that the scorch and cure times decreased with the addition of silica and the compound viscosity increased on increasing the silica content. The mechanical properties for PSi filled NR/NBR vulcanizates were greater than those for FASi filled NR/NBR vulcanizates in all cases. The PSi could be used for reinforcing the NR/NBR vulcanizates while the silica from FA was regarded as a semi‐reinforcing and/or extending filler. The incorporation of CR or ENR enhanced the mechanical properties of the NR/NBR vulcanizates, the ENR being more effective and compatible with the blend. The mechanical properties of the NR/NBR vulcanizates were improved by post‐curing effect from thermal aging but deteriorated by the oil aging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Microbial desulfurization of waste tyre rubber has been investigated with great efforts since 1990s, because waste rubber has created serious ecological and environmental problems. A microbial desulfurization technique for SBR ground rubber has been developed by a novel sulfur‐oxidizing bacterium Sphingomonas sp. The adaptability of Sphingomonas sp. with SBR ground rubber was tested with the amounts of SBR ground rubber varying from 0.5 to 4% g/l. The sol fraction of desulfurized SBR ground rubber increased 70%, compared with SBR ground rubber without desulfurization. Fourier transform infrared spectroscopy‐attenuated total reflectance (FTIR‐ATR) spectrum and X‐ray photoelectron spectroscopy (XPS) analysis of the desulfurized surface of vulcanized SBR flakes revealed that not only the oxidation of crosslinked S? S and S? C bonds, but also the rupture of C?C double bonds had happened to SBR vulcanizates during microbial desulfurization. The cure characteristics, such as scorch time and optimum cure time of natural rubber (NR) vulcanizates filled, were found to decrease with increasing contents of desulfurized SBR ground rubber, due to some reactive groups on its surface. NR vulcanizates filled with desulfurized SBR ground rubber had lower crosslink density and hardness, higher tensile strength and elongation at break, compared with those filled with SBR ground rubber of the same amount. Dynamic mechanical properties indicated that there were better crosslink distribution and stronger interfacial bonding between NR matrix and desulfurized SBR ground rubber. Scanning electron microscope (SEM) photographs showed that the fracture surfaces of NR vulcanizates filled with desulfurized SBR ground rubber had more smooth morphologies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Mechanical properties of highly filled composites based on polyethylene of various grades and crumb based on ethylene-propylene-diene rubber were studied. The influence of the crack resistance of the matrix polymer on the strain properties of rubber-reinforced plastics was considered. A scheme of failure of highly filled composites with the deformable filler was suggested.  相似文献   

16.
This research is conducted using palm kernel shell powder (PKS) as filler in natural rubber The effect of 3-aminopropyltrimethoxysilane as coupling agent on composites were studied at different palm kernel shell loading i.e, 0 5, 10, 15 and 20 phr The palm kernel shell was crushed and sieved to an average particle size of 5.53 μm The palm kernel shell filled natural rubber composites were prepared using laboratory size two roll mill The curing characteristics such as scorch time, cure time and maximum torque were obtained from rheometer The palm kernel shell powder filled natural rubber composites were cured at 150oC using hot press according to their cure time Curing characteristics, tensile properties, rubber-filler interaction and morphological properties of palm kernel shell powder filled natural rubber were studied Scorch time and cure time show reduction but tensile strength, elongation at break, modulus at 100% (M100) and modulus at 300% (M300) increased with the presence of 3-aminopropyltrimethyloxysilane Rubber-filler interaction studies showed that rubber filler interaction in natural rubber filled with palm kernel shell powder improved with incorporation of 3-aminopropyltrimethyoxysilane.  相似文献   

17.
橡胶增韧环氧树脂机理的研究   总被引:10,自引:0,他引:10  
本文研究了固化剂种类、环氧基体平均网链长度和分散相与基体间键合情况对体系韧性等的影响.结果说明,基体平均网链长度是一个更为重要的影响因素.分散相与基体间的化学键合也是重要的.文中对橡胶增韧环氧树脂的机理提出了见解.在交联密度较低的材料中,在橡胶颗粒附近叠加的应力场诱发下发生纵深度较大的断裂过程.分散相与基体间的化学键合增大该应力场强度有利于加大断裂过程区.  相似文献   

18.
《先进技术聚合物》2018,29(8):2381-2391
Neglecting the alteration of matrix curing characteristics in a filled rubber nanocomposite, as a result of possible interactions between the nano filler and curing agent ingredients, leads to inaccurate properties prediction using conventional hydrodynamic equations. In the current work, we present a new empirical extended version of hydrodynamic equation and examine its capability in predicting the viscoelastic properties of NBR/nanosilica system in which the negative influence of the filler on the curing process of the NBR matrix was confirmed through various analyses such as tensile test, rheometry, swelling experiments, and dynamic mechanical analysis. The results showed that the proposed empirical extended model is able to account the contribution of alteration of matrix curing characteristics in changing the composite properties below the filler percolation threshold. It was demonstrated that the extended model provides more accurate prediction of viscoelastic properties of silica‐filled cured NBR nanocomposites above glass transition temperature.  相似文献   

19.
基于国内外最新研究工作,系统总结了离子选择电极膜中革除或减少外增塑剂的新膜基体,包括丙烯酸酯类聚合物、羟基功能化的乙烯基树脂、聚氨酯、硅橡胶以及导电聚合物,对其物理化学性能以及传感器检测等进行了全面归纳与讨论.指出该类革除外增塑剂的传感膜不仅避免了增塑剂的泄漏及其对生物样品的污染,而且较传统增塑聚氯乙烯(PVC)膜扩散系数降低了约3个数量级,有利于抑制过膜离子流,使其检测下限较传统增塑PVC下降了5个数量级,且选择系数也有不同程度的改善.另外,该类传感膜材料由于与固体支撑材料间优良的粘附性保证了电极的使用寿命,特别是在微型化固态电极中.以这类传感膜构建的电位型离子传感器将以其独特的优势在环境监测、食品卫生,尤其是在医疗诊断、生物物质检测中展示出不可替代的作用.  相似文献   

20.
硅橡胶和氟橡胶作为国防、航天等重要领域的耐热材料一直被人们青睐,但其有着各自地优缺点且价格昂贵,本文尝试将这两种橡胶制成并用胶以解决氟橡胶不耐低温和加工性差的问题,以期增大其使用温度范围。采用机械共混法制备硅橡胶/氟橡胶并用胶,研究了硅橡胶和氟橡胶的混炼工艺、并用比、共硫化体系和硫化条件对并用胶力学性能的影响。结果表明,当硅橡胶/氟橡胶的质量比为10∶90,共硫化体系为3~#硫化剂/过氧化二异丙苯(DCP),一段硫化温度为170℃、硫化压力为10MPa、硫化时间为30min,二段硫化温度为200℃、硫化时间为6h时,并用胶的力学性能达到最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号