首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Nano-polycrystalline diamond (NPD) with various grain sizes has been synthesized from glassy carbon at pressures 15–25?GPa and temperatures 1700–2300°C using multianvil apparatus. The minimum temperature for the synthesis of pure NPD, below which a small amount of compressed graphite was formed, significantly increased with pressure from ~1700°C at 15?GPa to ~1900°C at 25?GPa. The NPD having grain sizes less than ~50?nm was synthesized at temperatures below ~2000°C at 15?GPa and ~2300°C at 25?GPa, above which significant grain growth was observed. The grain size of NPD decreases with increasing pressure and decreasing temperature, and the pure NPD with grain sizes less than 10?nm is obtained in a limited temperature range around 1800–2000°C, depending on pressure. The pure NPD from glassy carbon is highly transparent and exhibits a granular nano-texture, whose grain size is tunable by selecting adequate pressure and temperature conditions.  相似文献   

2.
In this work, we have analyzed the thermal properties of a GaN-based laser diode (LD) as functions of input powers, cooling conditions, and ambient temperatures. It was found that the thermal resistance has a slight change with input current under the forced cooling condition. In contrast to the forced cooling condition, significant change of thermal resistance was observed under the natural cooling condition. When the ambient temperature was increased from 0 to 50 °C, the measured thermal resistance was increased from 20 to 27.5 K/W.  相似文献   

3.
Thermal stability of GaN epilayers grown through metal-organic compound vapor deposition on a (0001) sapphire substrate was studied using atomic-force spectroscopy. Samples differing in quality were thermally annealed in ultrahigh vacuum in the range 700–950°C. Mosaic spread in the epitaxial layers is shown to strongly affect their thermal stability. Epilayers with a well-ordered mosaic structure exhibit surface degradation at a temperature of ~950°C. The surface morphology of layers with a large mosaic spread starts to change at lower temperatures, ~780°C.  相似文献   

4.
This study investigates the cellulose–lignin interactions during fast pyrolysis at 100–350 °C for better understanding fundamental pyrolysis mechanism of lignocellulosic biomass. The results show that co-pyrolysis of cellulose and lignin (with a mass ratio of 1:1) at temperatures < 300 °C leads to a char yield lower than the calculated char yield based on the addition of individual cellulose and lignin pyrolysis. The difference between the experimental and calculated char yields increases with temperature, from ~2% 150 °C to ~6% at 250 °C. Such differences in char yields provide direct evidences on the existence of cellulose–lignin interactions during co-pyrolysis of cellulose and lignin. At temperatures below 300 °C, the reductions in both lignin functional groups and sugar structures within the char indicate that co-pyrolysis of cellulose and lignin enhances the release of volatiles from both cellulose and lignin. Such an observation could be attributed to two possible reasons: (1) the stabilization of lignin-derived reactive species by cellulose-derived reaction intermediates as hydrogen donors, and (2) the thermal ejection of cellulose-derived species due to micro-explosion of liquid intermediates from lignin. In contrast, at temperatures ≥ 300 °C, co-pyrolysis of cellulose and lignin increases char yields, i.e., with the difference between the experimental and calculated char yields increasing from ~1% at 300 °C to ~8% at 350 °C. The results indicate that the cellulose-derived volatiles are difficult to diffuse through the lignin-derived liquid intermediates into the vapor phase, leading to increased char formation from co-pyrolysis of cellulose and lignin as temperature increases. Such an observation is further supported by the increased retention of cellulose functional groups in the char from co-pyrolysis of cellulose and lignin.  相似文献   

5.
The objective of the current research deals with the experimental study of an air-atomized spray with surfactant-added water, cooling a 12-mm-thick AISI-1020 stationary steel plate at three different initial surface temperatures (400°C, 600°C, and 900°C). Furthermore, the effects of surfactant concentration and airflow rate on the cooling rate have been investigated. The surface heat flux and surface temperature show a significant improvement in cooling for all three cases of initial surface temperatures when the air-atomized spray was used with surfactant-added water.  相似文献   

6.
This article directly investigates the effect of a cooling medium's coolant temperature on the condensation of the refrigerant R-134a. The study presents an experimental investigation into condensation heat transfer, vapor quality, and pressure drop of R-134a flowing through a commercial annular helicoidal pipe under the severe climatic conditions of a Kuwait summer. The quality of the refrigerant is calculated using the temperature and pressure obtained from the experiment. Measurements were performed for refrigerant mass fluxes ranging from 50 to 650 kg/m2s, with a cooling water flow Reynolds number range of 950 to 15,000 at a fixed gas saturation temperature of 42°C and cooling wall temperatures of 5°C, 10°C, and 20°C. The data shows that with an increase of refrigerant mass flux, the overall condensation heat transfer coefficients of R-134a increased, and the pressure drops also increased. However, with the increase of mass flux of cooling water, the refrigerant-side heat transfer coefficients decreased. Using low mass flux in a helicoidal tube improves the heat transfer coefficient. Furthermore, selecting low wall temperature for the cooling medium gives a higher refrigerant-side heat transfer coefficient.  相似文献   

7.
The article provides results of experimental investigation of a fresh water motion in a flume with limited dimensions at lateral heating. The initial water temperature in the flume ranged from 0 to 22 °C. It is shown that there are qualitative changes of the motion picture in the vicinity of initial temperature in the flume equal to the one at which water has maximal density (approximately 4 °C). At an initial temperature in the flume exceeding or equal to 4 °C, the heated water propagates in the form of a relatively thin surface jet, and at jet reflection from the flume end walls the heated water is accumulated only in the upper layer. When the initial temperature in the flume is below 4 °C the convective instability develops. A part of the heated water sinks to the bottom. The paper provides respective illustrations and quantitative data on the distribution of temperature and velocity.  相似文献   

8.
Abstract

A special furnace with programmable temperature gradient was contructed. It can be arranged inside an internally heated gas pressure chamber. In this work, the application of the furnace to obtain mercury telluride crystals is presented. Experiments were carried out under gas pressure of argon or nitrogen up to 1,5 GPa in a gas chamber of 30 nun internal diameter; the temperature range used was 25°C–800°C. Since graphite heating elements are used, higher working temperatures are possible. Quasi linear temperature gradient determined by three independent thermocouples can be programmed by the power control systems (i.e. Eurotherm units for the three regulation zones).  相似文献   

9.
Silicon nitride composite as a candidate of a window material for high power CW (Continuous Wave) millimeter-waves was high power tested especially with a surface cooling by impinging gas nitrogen jets on the single-disk surface. Gas-cooling dramatically suppressed the temperature of the window disk even with gas flow rate of around 100 l/min. With gas cooling of 465l/min., 130kW CW power of HE11 mode could be transmitted through the silicon nitride window with a diameter of 88.9mm. The peak window temperature was completely saturated on 123.6 °C. Without gas-cooling it did not saturate and reached 323 °C during 30 seconds pulse. A possibility of 1MW CW single disk Brewster windows with a forced gas-cooling is discussed, resulting in convinced prospects of the windows with realistic size and thickness.  相似文献   

10.
A thermally driven heat pump using a solid/vapor adsorption/desorption compression process in a vapor compression cycle is thermodynamically analyzed. The cycle utilizes a simple heat transfer fluid circulating loop for heating and cooling two solid adsorbent beds. This heat transfer fluid loop also serves to transmit heat recovered from the adsorbing bed being cooled to the desorbing bed being heated. This heat recovery process greatly improves the efficiency of the single stage solid/vapor adsorption process without the complication of a two stage cycle. During the heating and cooling processes a thermal wave profile travels through the beds. This paper uses a square wave representation for the true shape of the thermal wave. However, this square wave is assumed to stop short of the bed ends to account for realistic finite waveforms. The square wave model is integrated into a thermodynamic cycle which provides detailed information on the performance of the beds as well as the COP and the heating and cooling outputs of the heat pump system. Significant cycle design and operating parameters are varied to determine their effect on cycle performance.  相似文献   

11.
It was found that by changing the substrate temperature from room temperature to ~850 °C, ZnO thin films with widely varying resistivity values could be grown on sapphire substrates using DC-discharge-assisted pulsed laser deposition (PLD) in oxygen ambient. The resistivity of the film grown at room temperature was too high to measure using our existing setup. However, as the growth temperature was increased from 550 °C to 750 °C, the resistivity first decreased slowly from ~14.0 to 4.4 Ω?m and then dropped suddenly to get saturated at ~2.0×10?3 Ω?m as the growth temperature was further increased. In contrast to these, when there was no DC-discharge, the variation of resistivity for ZnO thin films grown by PLD was marginal up to the substrate temperature of ~850 °C. The reason for these observations was found to be the combined effects of reduction in donor defect densities like oxygen vacancies and zinc interstitials, introduction of acceptor type defects like interstitial oxygen and zinc vacancies, and the resultant poor carrier mobility at lower growth temperatures. At higher growth temperatures (800 °C and above), the appearance of oxygen vacancies and increase in mobility due to better crystalline quality were found to be responsible for reducing the resistivity. The PL of these films had significant emission in the green and red regions of the spectrum due to the aforesaid defect related transitions. Such highly resistive and luminescent films might be suited for applications such as resistive RAM, UV-photo detector, TFT, piezoelectric, transparent phosphor, and broadband LED applications.  相似文献   

12.
In this article, two arrangements of the multiple effect absorption (MEA) type are presented. They are using LiBr-H2O and are powered by the exhaust of gas turbines. The first arrangement (MEA-I) is used as a cooling device and is coupled to an engine that drives a VC cooling unit. The other one (MEA-II) is used as a solution concentration machine and is coupled to an engine that drives a RO unit.Thermodynamic analysis for MEA-I showed a COPt of 1.31 and 2.18 for evaporation temperatures of 5°C and 14°C respectively. Relative to the VC, the MEA-I increased the cooling capacity by 65% and 77% with payback periods of 35 months and 29 months for evaporation temperatures of 5°C and 14°C respectively.The MEA-II is analyzed using sea water as an example for a water based solution. Relative to a gas turbine driven RO desalination unit the MEA-II increased the fresh water produced by 13.5%. As a solution concentration machine the MEA-II requires 28% of the heat of evaporation with a solution top temperature of 36°C which makes it equivalent to a machine with five evaporators, where the solution top temperature reaches 66°C. Based on selling the released solvent byproduct water alone, the MEA-II would have a payback period of 77 months.  相似文献   

13.
Changes in the microhardness of silicon samples exposed to temperatures of 20–60°C are studied. It is found that the microhardness increases; this effect is preserved at room temperature for 20 min and non-monotonically depends on the temperature and exposure time (the changes are maximal at ~40°C and ~100 s, respectively). The microhardness of samples with native oxide removed does not change. The results are discussed in terms of a model of processes in the silicon-oxide system, which was previously proposed for the case of irradiation of silicon with light. The practical importance of the effect is discussed.  相似文献   

14.
A one-dimensional discrete Boltzmann model for detonation simulation is presented. Instead of numerical solving Navier-Stokes equations, this model obtains the information of flow field through numerical solving specially discretized Boltzmann equation. Several classical benchmarks including Sod shock wave tube, Colella explosion problem,and one-dimensional self-sustainable stable detonation are simulated to validate the new model. Based on the new model,the influence of negative temperature coefficient of reaction rate on detonation is further investigated. It is found that an abnormal detonation with two wave heads periodically appears under negative temperature coefficient condition.The causes of the abnormal detonation are analyzed. One typical cycle of the periodic abnormal detonation and its development process are discussed.  相似文献   

15.

The performance of a domestic heat pump that uses a low quantity of propane as refrigerant has been experimentally investigated. The heat pump consists of two minichannel aluminium heat exchangers, a scroll compressor, and an electronic expansion valve. It was charged with the minimum amount of refrigerant propane required for the stable operation of the heat pump without permitting refrigerant vapor into the expansion valve at incoming heat source fluid temperature to the evaporator of +10°C. The inlet temperature of the heat source fluid passing through the evaporator was varied from +10°C to ?10°C while holding the condensing temperature constant at 35°C, 40°C, 50°C, and 60°C, respectively. The minimum refrigerant charges required at above-tested condensing temperatures were found to decrease when the condensing temperature increased and were recorded as 230 g, 224 g, 215 g, and 205 g, respectively. The results confirm that a heat pump with 5 kW capacity can be designed with less than 200 g charge of refrigerant propane in the system. Due to the high solubility of propane in compressor lubrication oil, the amount of refrigerant which may escape rapidly in case of accident or leakage is less than 150 g.  相似文献   

16.
Fiber-optic-coupled scintillation dosimeters are characterized by their small active volume if compared to other existing systems, and are therefore particularly suited for internal in vivo dosimetry. Due to possible differences between calibration conditions (i.e., room temperature) and conditions of clinical application (i.e., body temperature), their temperature dependence should be accurately studied. In this work, the temperature dependence of a Ce3+ doped SiO2 scintillation detector coupled to a SiO2 optical fibre was investigated for high dose rate brachytherapy applications. To this aim, two sets of irradiations with two different Ir-192 sources were performed in a water bath phantom at water temperatures ranging between 17 °C and 40.4 °C (Experiment 1). The relative response of the dosimeter was collected and analyzed. The same experiment was repeated with a second optical fibre which was designed without the active Ce3+ doped part at its end (Experiment 2) as well as by changing the length of the passive fibre inserted in water (Experiment 3). The two sets of measurements of experiment 1 were in accordance, indicating a linear increase with temperature of the scintillator sensitivity, with an average increase of 0.27 ± 0.2%/°C. In experiment 2, a 0.5%/°C increase of the collected signal resulted for the passive fibre. No significant difference of the temperature coefficient was found by changing the length of the fibre inserted in water (experiment 3). The obtained results show that a temperature-specific correction factor should be adopted at temperatures different than room temperature (e.g. for in vivo internal dosimetry). Further studies are required to understand the observations.  相似文献   

17.
本文对单壁面加热水平方管通道内混合对流换热进行了实验研究,其中加热面分别为底面、侧面、顶面,Re=1514~3028,Gr~*=2.06×10~6~8.22×10~6;通过对加热面温度进行曲线拟合减小壁面温度测量误差,得到考虑轴向导热的局部Nusselt数的变化规律。实验结果表明侧面加热和底面加热时,局部Nusselt数要明显高于顶面加热的情况;局部Nusselt数在管道前段受Re的影响较大,在后段受Gr~*的影响较大。  相似文献   

18.
The processes of accumulation of ion implanted hydrogen in blisters in silicon and its release during the thermal treatment from 350 to 1020?°C have been studied by optical techniques. It was established that accumulation of gaseous hydrogen inside blisters takes place at temperatures lower than ~450–500?°C and is accompanied by the growth of blister thickness and deformation of their caps. At higher temperatures the gaseous hydrogen goes out of the cavities dissolving in silicon. Due to the internal pressure dropping the elastically deformed top layer partially relaxes and the blister thickness decreases. Etching of the surface layer reveals the agglomerations of small voids (<0.3?mm) located in the place of blisters approximately at their depth. Proceeding from the fact that the processes in blistering are similar to those in ion cut, the following conclusions with respect to the latter were drawn. The exfoliation processes themselves occur at temperatures lower than ~500?°C. The exfoliation efficiency particularly at the higher temperatures is essentially dependent on the heating rate.  相似文献   

19.
Transmission electron microscopy and magnetic measurements are used to study the formation of the microstructure and magnetic properties of Fe2NiAl (alni) alloy upon cooling at the critical rate (V ~ 2°/min) from the region of single-phase solid solution (1240°C). Cooling is interrupted by water quenching caused by temperatures Тquench. The periodical modulated structure formed during sample cooling at the critical rate guarantees the strongest possible coercive force (Нс = 670 Oe). The decomposition of the solid solution below 900°C includes a stage of primary modulated structural failure upon continuous cooling to temperature Тquench ~ 850°C, which corresponds to the weakest coercive force on the Нс(Тquench) curve. The periodical modulated structure is recovered when the temperature falls further; this is accompanied by an increase in the coercive force (up to Нс = 670 Oe) after cooling to 20°C.  相似文献   

20.
悬浮RDX炸药粉尘爆轰的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
用两相流模型对悬浮RDX炸药粉尘爆轰波进行了数值模拟。RDX炸药颗粒在爆轰波阵面后的高温高速气流中加速并升温,颗粒表面发生熔化。参考液滴在高速气流作用下剥离的效应,假设炸药熔化部分在高速气流的作用下发生剥离,破碎成极小的颗粒,瞬时发生分解反应,释放出能量支持爆轰波传播。数值模拟了在不同粒径和浓度的悬浮RDX炸药粉尘中爆轰波的发展与传播过程,得到了爆轰波流场中气-固两相的物理量分布,并确定了爆轰波参数。在较低的RDX粉尘浓度条件下,爆轰波阵面压力的峰值曲线出现振荡。当RDX粉尘浓度在80~150 g/m3时,数值模拟得到的爆轰波阵面压力峰值曲线的振荡是规则的;当RDX粉尘浓度为70 g/m3时,爆轰波阵面压力峰值曲线出现不规则振荡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号