首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of a complex experiment on the synchronous observation of geostationary-satellite signals and of reflected HF signals of the vertical-sounding station in the course of ionosphere modification by powerful short waves are analyzed using the method of refractive scattering of radio waves. We show that the main statements of the known stochastic theory of F-spread in the ionosphere can be used in the development of a model of artificial F-spread. In particular, the artificial F-spread can be described as multiple-ray propagation of short radio waves in the ionosphere modified by high-power radio waves, the electron-density distribution of which is a random process locally stationary in space and time.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 7, pp. 876–881, July, 1996.This paper was supported by the Russian Foundation for Fundamental Research (project 95-02-03716).  相似文献   

2.
We present the results of experimental studies of the features of field-aligned scattering of HF radio waves for different angles of incidence of high-power radio waves on the ionosphere. The amplitude, Doppler frequency shift, and azimuthal and vertical arrival angles of the scattered signals are measured. Calculated ray paths in the magnetoactive ionosphere are compared with experimental data on the scattered-signal reception under conditions of action of high-power oblique radio waves on the ionosphere. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 8, pp. 669–677, August 2007.  相似文献   

3.
We present the results of new studies of the sporadic E layer in the case of heating of the ionosphere by high-power HF radio emission. The measurements were performed at the “Sura” heating facility. Ionosphere was modified by high-power radio emission from the “Sura” facility and was sounded by the probing radio waves of the same frequency and mode. The heating of the ionosphere resulted in the formation of artificial periodic inhomogeneities, and an increase in the intensity of all signals scattered by the D, E, and F regions and the sporadic E layer by 5–20 dB was observed. The increase was observed during heating of the ionosphere by each magnetoionic component, but was smaller for heating by an ordinary-mode wave. This effect was resonant and disappeared as a result of the frequency detuning down to 85 kHz. During the ionospheric modification, the signal-intensity increased due to modulation of the natural profile of the electron number density by the artificial periodic structure. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 8, pp. 695–708, August 2007.  相似文献   

4.
We present the results of experimental studies of the properties of the plasma-density disturbances created during heating of the ionospheric F2 region by high-power HF radio waves radiated by the “Sura” heating facility (Radiophysical Research Institute, Nizhny Novgorod). These experiments are specific in that they were performed in a sunlit (daytime) ionosphere when the generation of ionospheric turbulence has specific features and the turbulence intensity level is low enough. The plasma-density disturbances induced by high-power HF radio emission were sounded by signals of the GPS satellites, the line of sight to which crossed different parts of the disturbed ionosphere region. Threshold powers of the excitation of artificial plasma-density variations as well as spatial, temporal, spectral, and energy characteristics of the generated disturbances are determined.  相似文献   

5.
Alternative mechanisms of generation of the stimulated electromagnetic emission (SEE) excited in the ionosphere by high-power radio waves are analyzed on the basis of measurements of the SEE spectra obtained during the pump-wave frequency sweeping near the forth (n = 4) and fifth (n = 5) harmonics of the electron gyrofrequency nfce [1] and their comparison with the existing physical models. A method for determination of the magnetic field strength and plasma density near the double-resonance region in the ionosphere is developed. It is shown that the generation of the broad upshifted maximum (BUM) feature in the SEE spectrum should occur several kilometers below the double-resonance altitude. A role of high-frequency plasma modes and small-scale magnetic field-aligned irregularities, excited under ionosphere pumping by a high-power radio wave, in the formation of SEE spectra is demonstrated. It is shown that the difference in the emission intensities for f0 ≲ nfce and f0 > nfce is related to different regions (altitudes) at which the plasma waves exist in these cases. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 7, pp. 553–570, July 2008.  相似文献   

6.
We consider the problem of obtaining reliable values of the local-spectrum indices of the electron number density fluctuations for small-scale ionospheric turbulence. It is shown that the use of a multifractal analysis in combination with the synchronous correlation processing of the received signals in the experiments on remote radio sounding of the ionosphere by satellite signals permits one to solve the posed problem. In this case, the true values of the local-spectrum indices of small-scale ionospheric turbulence, which are measured in such specialized experiments under natural conditions and during modification of the ionosphere by high-power HF radio emission, can differ notably from their standard values obtained within the framework of the classical method of radio scintillations, in which only correlation processing of the data is used. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 7, pp. 571–574, July 2008.  相似文献   

7.
We consider the problem of diagnostics of the local structure of small-scale ionospheric turbulence using the multifractal analysis of received signals from the Earth’s orbital satellites after the radio sounding of the inhomogeneous ionosphere by these signals. In particular, it is shown that analysis of the multifractal structure of the received-signal amplitude records by the method of multidimensional structural functions allows one to determine the indices of the multipower local spectra of the small-scale ionospheric turbulence, which are inherent in it due to the nonuniform spatial distribution of small-scale fluctuations of the electron number density. It is noted that information on the multipower spectrum of small-scale ionospheric turbulence is not available for the conventional radio scintillation method based on the classical spectral analysis of received signals during the remote radio sounding of the ionosphere. At the same time, the method of multidimensional structural functions is efficient under conditions of actual nonstationarity of the process of scattering of the HF radio waves by the randomly inhomogeneous ionospheric plasma. The method of multidimensional structural functions is used for the multifractal processing of received signals of orbital satellites during special experiments on radio sounding of the midlatitude ionosphere under natural conditions and its modification by high-power HF radio waves. First data on the indices of the multipower local spectra of small-scale ionospheric turbulence are obtained. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 52, No. 1, pp. 14–22, January 2009.  相似文献   

8.
We propose a new method for determination of the electron number density in the E region of the ionosphere on the basis of scattering of radio waves from artificial periodic inhomogeneities formed by the high-power radio emission at two frequencies and having different spatial periods. The ratio of relaxation times of the artificial periodic inhomogeneities at a given altitude is determined only by the ratio of their spatial periods, which makes it possible to determine electron number density. The paper presents the corresponding calculations and the estimates of possible measurement errors. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 9, pp. 744–750, September 2006.  相似文献   

9.
We present new results of studying the artificial periodic irregularities produced in the ionosphere by the radio emission of the high-power heating facility “Sura” during the period of observations of the sporadic E layer. Basing on the measurement results for the velocity of the vertical plasma motion and the electron profile density in the E region of the ionosphere, which were obtained by the method of resonance scattering of radiowaves by an artificially produced periodic structure, we analyze the possibility to produce a sporadic E layer by driving metal ions affected by the vertical shear of the velocity, which occurs at these altitudes due to the propagation of internal gravity waves. The parameters of these waves are evaluated, as well as the mass and concentration of metal ions in the sporadic E layer.  相似文献   

10.
We present the results of the experiment on studying the multifractal structure (with inhomogeneity sizes from tens to hundreds of meters across the Earth’s magnetic field) of the artificial ionospheric turbulence when the midlatitude ionosphere is affected by high-power HF radio waves. The experimental studies were performed on the basis of the “Sura” heating facility with the help of radio sounding of the disturbed region of the ionospheric plasma by signals from the Earth’s orbital satellites. The influence of the magnetic zenith effect on measured multifractal characteristics of the small-scale artificial turbulence of the midlatitude ionosphere was examined. In the case of vertical radio sounding of the disturbed ionosphere region, the measured multipower and generalized multifractal spectra of turbulence coincide well with similar multifractal characteristics of the ionospheric turbulence under natural conditions. This result is explained by the fact that the scattering of signals by weak quasi-isotropic small-scale inhomogeneities of the electron number density in a thick layer with a typical size of several hundred kilometers above the region of reflection of high-power HF radio waves gives the major contribution to the observed amplitude fluctuations of received signals. In the case of oblique sounding of the disturbance region at small angles between the line of sight to the satellite and the direction of the Earth’s magnetic field, the nonuniform structure of the small-scale turbulence with a relatively narrow multipower spectrum and small variations in the generalized multifractal spectrum of the electron number density was detected. Such a fairly well ordered structure of the turbulence is explained by the influence of the magnetic zenith effect on the generation of anisotropic small-scale artificial turbulence in a thin layer having a typical size of several ten kilometers and located below the pump-wave reflection height in the upper ionosphere.  相似文献   

11.
We consider the efficiency of trapping of short plasma waves excited by a high-power radio wave inside the magnetic field-aligned small-scale cylindrical irregularities with low density. It is shown that in the case of cylindrical irregularities the reflection of a plasma wave from the points of its transformation into cold plasma oscillations is sufficiently large. Therefore, this process must be taken into account in the calculation of heating of irregularities in the field of a high-power radio wave. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 3, pp. 181–195, March 2007.  相似文献   

12.
We present the results of experimental studies of propagation of short radio waves on a long transequatorial path of Laverton (Australia) — Rostov-on-Don, which were obtained with the help of an ionosonde/direction finder with chirp modulation of the signal. It is shown that conditions for propagation of anomalous signals by means of sideband reflection of radio waves from the Himalayan Hills and the Plateau of Iran and also due to scattering of radio waves from the high-latitude ionosphere of the northern hemisphere are realized on the given path. The propagation of radio waves is modeled with allowance for their scattering by anisotropic magnetic field-aligned irregularities of a high-latitude ionosphere, which are located on the northern wall of the main ionospheric trough of the F layer. It is shown that the results of the experiment agree well with the calculated data.  相似文献   

13.
We present the results of laboratory modeling of the physical processes which lead to smallscale stratification of the ionospheric plasma during active experiments on modification of the ionosphere by high-power radio waves. It is shown that such a stratification can result from thermal self-channeling of Langmuir waves in a magnetoplasma. We established that the selfchanneling is threshold in behavior such that the threshold significantly increases near gyroharmonics. It is demonstrated that in the process of self-channeling, the frequency spectrum of the Langmuir wave is enriched. In particular, spectral maxima are formed, which are shifted away from the carrier frequency by a value of the order of the lower-hybrid frequency. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 11, pp. 988–1003, November 2008.  相似文献   

14.
The generation of transients in the Earth’s upper atmosphere under the action of electron fluxes and high- and low-frequency electromagnetic waves has been studied onboard the small Vernov spacecraft (solar synchronous orbit, 98° inclination, height 640–830 km). The studies were carried out with ultraviolet (UV, 240–380 nm), red–infrared (IR, 610–800 nm), gamma-ray (0.01–3 MeV), and electron (0.2–15 MeV) detectors as well as with high-frequency (0.05–15 MHz) and low-frequency (0.1 Hz–40 kHz) radio receivers. Artificial optical signals distributed along the meridian in an extended region of latitudes in the Earth’s Northern and Southern Hemispheres modulated by a low frequency were recorded during the nadir observations at nighttime. Examples of the oscillograms of such signals in the UV and IR spectral ranges and their global distribution are presented. The emission generation altitude and the atmospheric components that can be the sources of this emission are discussed. Particular attention is given to the technogenic causes of this glow in the ionosphere under the action of powerful low- and high-frequency radio stations on the ionosphere.  相似文献   

15.
We present the results of experiments on modification of the ionospheric F region by two high-power (Peff 20 MW) O-mode electromagnetic waves. The experiments were performed at the Sura heating facility of the Radiophysical Research Institute (Nizhny Novgorod, Russia) in May 23–27, 1993 at the pump frequencies near the 4th, 5th, or 6th harmonics of the electron gyrofrequency. Ionospheric perturbations were diagnosed by measuring the stationary spectral characteristics of the stimulated electromagnetic emission (SEE) of the ionospheric plasma. We determine the features of variation in the spectral characteristics of particular SEE components during the simultaneous heating of the ionospheric plasma by two radio waves in comparison with the case of a monochromatic pump wave. We observed the effect of enhanced generation of the broad up-shifted maximum (BUM) by the higher-frequency pump wave. This is accompanied by strong suppression of the BUM induced by the lower-frequency pump wave. It is shown that the effects observed during the two-frequency heating of the ionosphere have well pronounced gyroharmonic properties, i.e., depend on both the electron-gyroharmonic number and the frequency detuning of the pump waves from a harmonic of the electron gyrofrequency. We also pointed out that a change in the properties of artificial small-scale ionospheric irregularities (striations) excited by high-power radio waves is not the cause of a change in the properties of the down-shifted maximum and the BUM during the two-frequency modification of the ionospheric plasma. Ways for the further development of these studies are discussed.__________Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 48, No. 2, pp. 110–133, February 2005.  相似文献   

16.
The parameters of plasma disturbances at altitudes 660 and 840 km, measured by the instruments onboard the French DEMETER satellite and the US DMSP satellites passing through the magnetic flux tube footed at the region of intense modification of the F 2 ionospheric layer by the high-power HF radio waves of the Sura heating facility, are presented. The formation of artificial enhanced-density plasma ducts in the outer ionosphere is observed experimentally. Conditions facilitating the formation of such ducts are pointed out.  相似文献   

17.
We show some results of experiments on synchronous sounding of the ionosphere by short-wave signals at the Radiophysical Research Institute’s test site in Zimenki and Vasil’sursk, Nizhniy Novgorod province, during ionospheric modification by high-power short radiowaves from transmitters of the “Sura” facility in Vasil’sursk. In the course of experiments we proved directly the decisive role of large-scale inhomogeneities of the ionospheric plasma with dimensions of from several kilometers to several dozens of kilometers in the formation of artificial F- spread. The small-scale inhomogeneities with dimensions smaller than 1 km, which are localized in a relatively thin layer near the reflection level of a high-power short radiowave, emerged only at sounding waves, propagating (reflected) in the immediate vicinity of the center of the heating region. Radiophysical Research Institute, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 40, No. 6, pp. 688–692, June, 1997.  相似文献   

18.
高功率微波在低电离层中传输特性分析   总被引:5,自引:8,他引:5       下载免费PDF全文
 高功率微波在大气中传输有一个衰减较大的高度,在这一高度,微波的强电场容易使大气电离形成等离子体,从而引起较大的非线性衰减,极端情况下会产生大气击穿。在低电离层(50~100 km),自然电离产生的电子浓度较高。主要研究高功率微波在低电离层的传输衰减特性。计算表明,在50 km高空,非线性吸收衰减最大,该高度也是最容易产生击穿的地方。在同样的电场强度下,脉宽越窄,衰减系数越小,衰减越小。在低电离层区间内,大气压强越小,吸收越小。  相似文献   

19.
高功率微波在大气中传输有一个衰减较大的高度,在这一高度,微波的强电场容易使大气电离形成等离子体,从而引起较大的非线性衰减,极端情况下会产生大气击穿。在低电离层(50~100 km),自然电离产生的电子浓度较高。主要研究高功率微波在低电离层的传输衰减特性。计算表明,在50 km高空,非线性吸收衰减最大,该高度也是最容易产生击穿的地方。在同样的电场强度下,脉宽越窄,衰减系数越小,衰减越小。在低电离层区间内,大气压强越小,吸收越小。  相似文献   

20.
We present the results of measuring the characteristics of the stimulated electromagnetic emission (SEE) of the ionosphere with variation in the zenith angle of a pump beam of high-power O-mode radio waves in the geomagnetic-meridian plane. The experiments were performed at the midlatitude heating facility “Sura.” It is established that the maximum intensity of the DM and BC components of SEE is observed for southward inclination angles θ ≈ 8°--12° of the antenna beam, for which the most intense generation of artificial small-scale ionospheric irregularities also takes place. Based on the results of measurements near the fourth and fifth harmonics of the electron gyrofrequency, it is found that the first component of the BUM (BUM-1) is generated only when the pump wave reaches the plasma-resonance region. This allows one to assume that, unlike the second component of the BUM (BUM-2), whose generation is determined by development of instability in the upper-hybrid resonance region, the BUM-1 generation mechanism should be related to processes of interaction between a high-power radio wave and the plasma in the plasma-resonance region. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 48, No. 9, pp. 743–756, September 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号