首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《Tetrahedron: Asymmetry》2001,12(20):2783-2787
The hyperthermophilic member of family 1 of the glycosyl hydrolases, the β-glycosidase from the archaeon Sulfolobus solfataricus (Ssβ-gly), has been used for an efficient synthesis of β-2-deoxyglucosides and for stereochemical studies of the reactions of glucal in the presence of alkyl and pyranosidic acceptors. Protonation of the double bond of glucal resulting in the equatorially disposed proton was observed and an indication of the protonating amino acid in the active site was obtained by the use of a mutant enzyme. The regioselectivity in the formation of β-2-deoxyglucosides of pyranosidic acceptors is different from that reported for mesophilic biocatalysts.  相似文献   

2.
Silk fibroin derived from Bombyx mori is a biomacromolecular protein with excellent biocompatibility. The aim of this work was to develop silk fibroin nanoparticles (SFNs) derived from the fibrous protein, which is a novel vector for enzyme modification in food processing. Silk fibroin was dissolved in highly concentrated CaCl2 and subjected to lengthy desalting in water. The resulting liquid silk, which contained water-soluble polypeptides with molecular mass ranging from 10 to 200 kDa, and β-glucosidase were added rapidly into acetone. The β-glucosidase molecules were embedded into silk fibroin nanoparticles, forming β-glucosidase–silk fibroin nanoparticles (βG–SFNs) with a diameter of 50–150 nm. The enzyme activity of the βG–SFN bioconjugates was determined with p-nitrophenyl-β-d-glucoside as the substrate, and the optimum conditions for the preparation of βG–SFNs were investigated. The enzyme activity recovery of βG–SFNs was 59.2 % compared to the free enzyme (specific activity was 1 U mg-1). The kinetic parameters of the βG–SFNs and the free β-glucosidase were the same. The βG–SFNs had good operational stability and could be used repeatedly. These results confirmed that silk protein nanoparticles were good carriers as bioconjugates for the modification of enzymes with potential value for research and development. The method used in this study has potential applications in food processing and the production of flavour agents.  相似文献   

3.
β-glucuronidase is an attractive reporter and prodrug-converting enzyme. The development of near-IR (NIR) probes for imaging of β-glucuronidase activity would be ideal to allow estimation of reporter expression and for personalized glucuronide prodrug cancer therapy in preclinical studies. However, NIR glucuronide probes are not yet available. In this work, we developed two fluorescent probes for detection of β-glucuronidase activity, one for the NIR range (containing IR-820 dye) and the other for the visible range [containing fluorescein isothiocyanate (FITC)], by utilizing a difluoromethylphenol-glucuronide moiety (TrapG) to trap the fluorochromes in the vicinity of the active enzyme. β-glucuronidase-mediated hydrolysis of the glucuronyl bond of TrapG generates a highly reactive alkylating group that facilitates the attachment of the fluorochrome to nucleophilic moieties located near β-glucuronidase-expressing sites. FITC-TrapG was selectively trapped on purified β-glucuronidase or β-glucuronidase-expressing CT26 cells (CT26/mβG) but not on bovine serum albumin or non-β-glucuronidase-expressing CT26 cells used as controls. β-glucuronidase-activated FITC-TrapG did not interfere with β-glucuronidase activity and could label bystander proteins near β-glucuronidase. Both FITC-TrapG and NIR-TrapG specifically imaged subcutaneous CT26/mβG tumors, but only NIR-TrapG could image CT26/mβG tumors transplanted deep in the liver. Thus NIR-TrapG may provide a valuable tool for visualizing β-glucuronidase activity in vivo.  相似文献   

4.
Fungal indole prenyltransferases participate in a multitude of biosynthetic pathways. Their ability to prenylate diverse substrates has attracted interest for potential use in chemoenzymatic synthesis. The fungal indole prenyltransferase FtmPT1 catalyzes the prenylation of brevianamide F in the biosynthesis of fumitremorgin-type alkaloids, which show diverse pharmacological activities and are promising candidates for the development of antitumor agents. Here, we report crystal structures of unliganded Aspergillus fumigatus FtmPT1 as well as of a ternary complex of FtmPT1 bound to brevianamide F and an analogue of its isoprenoid substrate dimethylallyl diphosphate. FtmPT1 assumes a rare α/β-barrel fold, consisting of 10 circularly arranged β-strands surrounded by α-helices. Catalysis is performed in a hydrophobic reaction chamber at the center of the barrel. In combination with mutagenesis experiments, our analysis of the liganded and unliganded structures provides insight into the mechanism of catalysis and the determinants of regiospecificity. Sequence conservation of key features indicates that all fungal indole prenyltransferases possess similar active site architectures. However, while the dimethylallyl diphosphate binding site is strictly conserved in these enzymes, subtle changes in the reaction chamber likely allow for the accommodation of diverse aromatic substrates for prenylation. In support of this concept, we were able to redirect the regioselectivity of FtmPT1 by a single mutation of glycine 115 to threonine. This finding provides support for a potential use of fungal indole prenyltransferases as modifiable bioreactors that can be engineered to catalyze highly specific prenyl transfer reactions.  相似文献   

5.
The activity of β-glucosidase (βG), total cellulase (FPase) and endoglucanase (CMCase), produced by Aspergillus japonicus URM5620, was studied on solid-state fermentation using castor bean meal as substrate. The effect of the substrate amount, initial moisture, pH, and temperature on cellulase production was studied using a full factorial design (2(4)). The maximum βG, FPase, and CMCase activity was 88.3, 953.4, and 191.6 U/g dry substrate, respectively. The best enzyme activities for all three enzymes were obtained at the same conditions with 5.0 g of substrate, initial moisture 15% at 25 °C and pH 6.0 with 120 h of fermentation. The optimum activity for FPase and CMCase was found at pH 3.0 at an optimum temperature of 50 °C for FPase and of 55 °C for CMCase. The cellulases were stable in the range of pH 3.0-10.0 at 50 °C temperature. The enzyme production optimization demonstrated clearly the impact of the process parameters on the yield of the cellulolytic enzymes.  相似文献   

6.
β-Glucosidase was covalently immobilized alone and coimmobilized with cellulase using a hydrophilic polyurethane foam (Hypol®FHP 2002). Immobilization improved the functional properties of the enzymes. When immobilized alone, the Km for cellobiose of β-glucosidase was decreased by 33% and the pH optimum shifted to a slightly more basic value, compared to the free enzyme. Immobilized β-glucosidase was extremely stable (95% of activity remained after 1000 h of continuous use). Coimmobilization of cellulase and β-glucosidase produced a cellulose-hydrolyzing complex with a 2.5-fold greater rate of glucose production for soluble cellulose and a four-fold greater increase for insoluble cellulose, compared to immobilized cellulase alone. The immobilized enzymes showed a broader acceptance of various types of insoluble cellulose substrates than did the free enzymes and showed a long-term (at least 24 h) linear rate of glucose production from microcrystalline cellulose. The pH optimum for the coimmobilized enzymes was 6.0. This method for enzyme immobilization is fast, irreversible, and does not require harsh conditions. The enhanced glucose yields obtained indicate that this method may prove useful for commercial cellulose hydrolysis.  相似文献   

7.
S-adenosylhomocysteine hydrolase (SAHH), a cellular enzyme that plays a key role in methylation reactions including those required for maturation of viral mRNA, is an important drug target in the discovery of antiviral agents. While targeting the active site is a straightforward strategy of enzyme inhibition, evidence of allosteric modulation of active site in many enzymes underscores the molecular origin of signal transduction. Information of co-evolving sequences in SAHH family and the key residues for functional dynamics that can be identified using native topology of the enzyme provide glimpses into how the allosteric signaling network, dispersed over the molecular structure, coordinates intra- and intersubunit conformational dynamics. To study the link between the allosteric communication and functional dynamics of SAHHs, we performed Brownian dynamics simulations by building a coarse-grained model based on the holo and ligand-bound structures. The simulations of ligand-induced transition revealed that the signal of intrasubunit closure dynamics is transmitted to form intersubunit contacts, which in turn invoke a precise alignment of active site, followed by the dimer-dimer rotation that compacts the whole tetrameric structure. Further analyses of SAHH dynamics associated with ligand binding provided evidence of both induced fit and population shift mechanisms and also showed that the transition-state ensemble is akin to the ligand-bound state. Besides the formation of enzyme-ligand contacts at the active site, the allosteric couplings from the residues distal to the active site are vital to the enzymatic function.  相似文献   

8.
The enzymes of the non‐mevalonate pathway for isoprenoid biosynthesis have been identified as attractive targets with novel modes of action for the development of herbicides for crop protection and agents against infectious diseases. This pathway is present in many pathogenic organisms and plants, but absent in mammals. By using high‐throughput screening, we identified highly halogenated marine natural products, the pseudilins, to be inhibitors of the third enzyme, IspD, in the pathway. Their activity against the IspD enzymes from Arabidopsis thaliana and Plasmodium vivax was determined in photometric and NMR‐based assays. Cocrystal structures revealed that pseudilins bind to an allosteric pocket by using both divalent metal ion coordination and halogen bonding. The allosteric mode of action for preventing cosubstrate (CTP) binding at the active site was elucidated. Pseudilins show herbicidal activity in plant assays and antiplasmodial activity in cell‐based assays.  相似文献   

9.
The structure of the β-glycosidase inhibitors 1–7 and 10–13 suggests that protonation of O–C(1) (the glycosidic O-center) of the substrate by a carboxy group of the retaining β-glycosidases does not occur in the plane perpendicular to the ring of the glycon (β-side; ‘from the top’), but in the plane of the ring (‘from the side’). The triazoles 17 and 18 have been prepared in six steps from the L -xylofuranose 21 . They possess a CH group instead of the N-center of the related tetrazoles 4 and 5 , corresponding to the glycosidic O-atom, and a very similar structure, both in solution and in the solid state. Unlike the tetrazoles, however, which are good-to-medium inhibitors of retaining β-glycosidases, the triazoles do not inhibit the β-glycosidases from sweet almonds, snail, and bovine liver, and only slightly inhibit the β-glucosidase from Caldocellum saccharolyticum. This is in keeping with the proposed direction of protonation in the plane of the saccharide ring and with modelling studies, docking 4 into the active site of the white clover cyanogenic β-glucosidase and 6 into the E. coli β-galactosidase and the Lactococcus lactis 6-phospho-β-galactosidase.  相似文献   

10.
Allosteric regulation of enzymatic activity forms the basis for controlling a plethora of vital cellular processes. While the mechanism underlying regulation of multimeric enzymes is generally well understood and proposed to primarily operate via conformational selection, the mechanism underlying allosteric regulation of monomeric enzymes is poorly understood. Here we monitored for the first time allosteric regulation of enzymatic activity at the single molecule level. We measured single stochastic catalytic turnovers of a monomeric metabolic enzyme (Thermomyces lanuginosus Lipase) while titrating its proximity to a lipid membrane that acts as an allosteric effector. The single molecule measurements revealed the existence of discrete binary functional states that could not be identified in macroscopic measurements due to ensemble averaging. The discrete functional states correlate with the enzyme's major conformational states and are redistributed in the presence of the regulatory effector. Thus, our data support allosteric regulation of monomeric enzymes to operate via selection of preexisting functional states and not via induction of new ones.  相似文献   

11.
Non-canonical amino acids (ncAAs) are useful synthons for the development of new medicines, materials, and probes for bioactivity. Recently, enzyme engineering has been leveraged to produce a suite of highly active enzymes for the synthesis of β-substituted amino acids. However, there are few examples of biocatalytic N-substitution reactions to make α,β-diamino acids. In this study, we used directed evolution to engineer the β-subunit of tryptophan synthase, TrpB, for improved activity with diverse amine nucleophiles. Mechanistic analysis shows that high yields are hindered by product re-entry into the catalytic cycle and subsequent decomposition. Additional equivalents of l -serine can inhibit product reentry through kinetic competition, facilitating preparative scale synthesis. We show β-substitution with a dozen aryl amine nucleophiles, including demonstration on a gram scale. These transformations yield an underexplored class of amino acids that can serve as unique building blocks for chemical biology and medicinal chemistry.  相似文献   

12.
Zampanolide and its less active analog dactylolide compete with paclitaxel for binding to microtubules and represent a new class of microtubule-stabilizing agent (MSA). Mass spectrometry demonstrated that the mechanism of action of both compounds involved covalent binding to β-tubulin at residues N228 and H229 in the taxane site of the microtubule. Alkylation of N228 and H229 was also detected in α,β-tubulin dimers. However, unlike cyclostreptin, the other known MSA that alkylates β-tubulin, zampanolide was a strong MSA. Modeling the structure of the adducts, using the NMR-derived dactylolide conformation, indicated that the stabilizing activity of zampanolide is likely due to interactions with the M-loop. Our results strongly support the existence of the luminal taxane site of microtubules in tubulin dimers and suggest that microtubule nucleation induction by MSAs may proceed through an allosteric mechanism.  相似文献   

13.
刘雪锋  李磊  方云 《化学学报》2008,66(17):1967-1973
用核磁共振(1H NMR)、圆二色谱(CD)、荧光光谱(FS)以及紫外光谱(UV)技术考察了中药有效成分盐酸小檗碱(BC)对牛血清白蛋白(BSA)-Cu2+结合过程的变构效应, 得到分别表征BSA内源荧光猝灭、BSA-Cu2+复合物稳定性以及Cu2+在BSA分子上的结合位点发生变构的定量效应参数βQ (βA和βn)和效率参数γQ (γA和γn). 结果表明, BC对Cu2+猝灭BSA内源荧光呈负变构效应(0<βQ<1), 而对BSA-Cu2+复合物稳定性以及Cu2+在BSA分子上的结合位点呈正变构效应(βA>1, βn>1); 变构效应随BC浓度增加而增强, BC对BSA-Cu2+复合物稳定性的变构效率明显高于其对荧光猝灭和结合位点的变构; BSA分子构象转变是变构效应的主要原因.  相似文献   

14.
Glycosidase enzymes that hydrolyze the biofilm exopolysaccharide poly-β-(1→6)-N-acetylglucosamine (PNAG) are critical tools to study biofilm and potential therapeutic biofilm dispersal agents. Function-driven metagenomic screening is a powerful approach for the discovery of new glycosidase but requires sensitive assays capable of distinguishing between the desired enzyme and functionally related enzymes. Herein, we report the synthesis of a colorimetric PNAG disaccharide analogue whose hydrolysis by PNAG glycosidases results in production of para-nitroaniline that can be continuously monitored at 410 nm. The assay is specific for enzymes capable of hydrolyzing PNAG and not related β-hexosaminidase enzymes with alternative glycosidic linkage specificities. This analogue enabled development of a continuous colorimetric assay for detection of PNAG hydrolyzing enzyme activity in crude E. coli cell lysates and suggests that this disaccharide probe will be critical for establishing the functional screening of metagenomic DNA libraries.  相似文献   

15.
以马来酰亚胺基修饰凝胶载体,通过β-葡萄糖胺和2-亚氨基硫代烷盐酸盐将作为配基的β-葡萄糖脒连接到载体上,合成了一种葡萄糖苷特异性固相萃取固定相,并对其固相萃取性能进行了表征.该固定相对葡萄糖苷具有特异性识别,并成功用于固相萃取分离葡萄糖苷.  相似文献   

16.
The saponins of Bupleurum falcatum L., saikosaponins, are the major components responsible for its pharmacological and biological activities. However, the anti-cancer effects of prosaikogenin and saikogenin, which are glycoside hydrolyzed saikosaponins, are still unknown due to its rarity in plants. In this study, we applied two recombinant glycoside hydrolases that exhibit glycoside cleavage activity with saikosaponins. The two enzymes, BglPm and BglLk, were cloned from Paenibacillus mucilaginosus and Lactobacillus koreensis, and exhibited good activity between 30–37 °C and pH 6.5–7.0. Saikosaponin A and D were purified and obtained from the crude B. falcatum L. extract using preparative high performance liquid chromatography technique. Saikosaponin A and D were converted into saikogenin F via prosaikogenin F, and saikogenin G via prosaikogenin G using enzyme transformation with high β-glycosidase activity. The two saikogenin and two prosaikogenin compounds were purified using a silica column to obtain 78.1, 62.4, 8.3, and 7.5 mg of prosaikogenin F, prosaikogenin G, saikogenin F, and saikogenin G, respectively, each with 98% purity. The anti-cancer effect of the six highly purified saikosaponins was investigated in the human colon cancer cell line HCT 116. The results suggested that saikosaponins and prosaikogenins markedly inhibit the growth of the cancer cell line. Thus, this enzymatic technology could significantly improve the production of saponin metabolites of B. falcatum L.  相似文献   

17.
Chitinases are glycosyl hydrolases that catalyze the hydrolysis of β-(1,4)-glycosidic bonds in chitin, the major structural polysaccharide presented in the cuticle and gut peritrophic matrix of insects. Two aspartate residues (D143, D145) and one tryptophan (W146) in the Lymantria dispar chitinase are highly conserved residues observed within the second conserved motif of the family 18 chitinase catalytic region. In this study, a chitinase cDNA, LdCht5, was cloned from L. dispar, and the roles of the three residues were investigated using site-directed mutagenesis and substituting them with three other amino acids. Seven mutant proteins, D143E, D145E, W146G, D143E/D145E, D143E/W146G, D145E/W146G, and D143E/D145E/W146G, as well as the wild-type enzyme, were produced using the baculovirus-insect cell line expression system. The enzymatic and kinetic properties of these mutant enzymes were measured using the oligosaccharide substrate MU-(GlcNAc)3. Among the seven mutants, the D145E, D143E/D145E, and D145E/W146G mutations kept some extant catalytic activity toward MU-(GlcNAc)3, while the D143E, W146G, D143E/W146G, and D143E/D145E/W146G mutant enzymes were inactivated. Compared with the mutant enzymes, the wild-type enzyme had higher values of k cat and k cat / K m . A study of the multiple point mutations in the second conserved catalytic region would help to elucidate the role of the critical residues and their relationships.  相似文献   

18.
Disseminating antibiotic resistance rendered by bacteria against the widely used β-lactam antibiotics is a serious concern for public health care. The development of inhibitors for drug-resistant β-lactamase enzymes is vital to combat this rapidly escalating problem. Recently, the U.S. Food and Drug Administration approved a non-β-lactam inhibitor called avibactam for the treatment of complicated intra-abdominal and urinary tract infections caused by drug-resistant Gram-negative bacteria. This work sheds light on the molecular origin of the inhibitory effect of avibactam against the drug-resistant CTX-M variant of class A β-lactamases. In particular, we probed the structural evolution, dynamics features, and energetics along the acylation and deacylation reaction pathways through enhanced sampling molecular dynamics methods and free-energy calculations. We scrutinized the roles of active site residues, the nature of the carbamoyl linkage formed in the inhibitor–enzyme covalent intermediate, and other structural features of the inhibitor molecule. By unraveling the reasons behind the inhibition of all the deacylation routes, we can explain various experimental structural and kinetics data, and propose a way to design new inhibitors based on the β-lactam framework.  相似文献   

19.
Phenylalanine hydroxylase, a mononuclear non-heme iron enzyme, catalyzes the hydroxylation of phenylalanine to tyrosine in the presence of oxygen and reduced pterin cofactor. X-ray structural studies have established the coordination around the iron metal center and point to significant interactions within the second coordination sphere. One such interaction involves Tyr325 in human phenylalanine hydroxylase (hPAH), which forms a hydrogen-bonding network with an aqua ligand on iron and the pterin cofactor. The full-length tetramer (1-452) and truncated dimer (117-424) Tyr325Phe hPAH mutant enzymes showed similar kinetics, thermal stabilities, and oligomerization profiles as their corresponding wild-type proteins. The possibility of in vivo posttranslational hydroxylation that would restore the activity of hPAH was examined by mass spectrometry on the trypsin digested full-length (1-452) hPAH Tyr325Phe point mutant. The amino acid tags obtained by ESI-MS/MS confirmed the presence of a Phe325 in the peptide corresponding to the doubly charged precursor ion at m/z 916.4 (L A T I F W F T V E F G L C K), and its hydroxylated counterpart in the peptide corresponding to the m/z 924.4 (L A T I F-OH W F T V E F G L C K) byproduct ion series comprising the fragments y(5)-y(12). Furthermore, the point mutation Tyr325Ala resulted in an enzyme that was totally inactive and did not display any evidence of hydroxylation. These results demonstrate the importance of Tyr325 for proper conformation of the active site, substrate binding, and catalysis. The rescue of the Tyr325Phe mutant in hPAH via self-hydroxylation presents a novel example of oxidative repair on the molecular level.  相似文献   

20.
Allosteric regulation is an essential biological process that allows enzymes to modulate their active site properties by binding a control molecule at the protein exterior. Here we show the first example of capsule catalysis in which activity is changed by exotopic binding. This study utilizes a simple Pd2L4 capsule that can partition substrates and external effectors with high fidelity. We also present a detailed, quantitative understanding of how effector interactions alter both substrate and transition state binding. Unlike other allosteric host systems, perturbations are not a consequence of large mechanical changes, rather subtle electronic effects resulting from weak, non-covalent binding to the exterior surface. This investigation paves the way to more sophisticated allosteric systems.

External effector binding allosterically regulates the catalytic properties of a simple Pd2L4 capsule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号