首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
综述了近年来胶体刻蚀领域的研究进展, 分别讨论了基于胶体微粒和胶体晶体为模板的可控沉积与可控刻蚀及在固体平面基质、曲面基质和气液界面等不同基质上构筑结构化表面的方法. 同时还探讨了利用胶体刻蚀方法形成的微纳结构在光、电、磁以及表面润湿和生物学等方面的应用.  相似文献   

2.
A number of poly(N-isopropylacrylamide) (polyNIPAM) microgels were prepared with dimethacrylate cross-linking agents of various lengths, ether and ester groups in the backbone, and pendant vinylidine functionality. These materials were characterized by examining their morphological patterns using optical and scanning electron microscopy. When ethylene glycol dimethacrylate (EGDMA) was used as a cross-linking agent, microspheres of approximately 1 μm in diameter were obtained. Diethylene glycol dimethacrylate (DEGDMA) cross-linking resulted in relatively large spherical structures (1–5 μm) as well as spherical nanostructures (200 nm). Using triethylene glycol dimethacrylate (TEGDMA) resulted in spheres with diameters between 1 μm and 3 μm. The hydrodynamic particle diameter decreased with the increasing chain length of the dimethacrylate cross-linking agents. The turbidity increased with the temperature of transition points occurring at approximately 31–32°C confirming the thermosensitivity of the obtained polymeric structures.  相似文献   

3.
The thermal expansion of epoxy-resin (Epikote 828)/particle composites has been measured in the range 77 to 450 K. The fillers used were Cu spheres (seven sizes from 5 to 150 μm diameter) and glass ballotini spheres (three sizes from 3.5 to 200 μm diameter). The volume concentrations used were 0.3 and 0.5 for Cu and 0.3 for glass. The experiments show that the addition of filler raises the glass transition temperature Tg, especially for fine particles. Below the normal value of Tg the thermal expansion is independent of particle size while above Tg the expansion is considerably smaller for samples containing the smaller particles. The effect is more pronounced for Cu than for glass filler. In addition a rapid heating rate reduces the expansion for specimens containing smaller particles but it does not effect the expansion for those containing large particles. The results, which are discussed in the light of the work of other authors, suggest that the addition of particles increases Tg by changing the nature of the polymer not only immediately at the particle surface but also for a considerable distance into the polymer itself. This probably occurs because the epoxy bonds strongly to the particles and this inhibits segmental rotations of the polymer even at considerable distances from the particle surface.  相似文献   

4.
We report in this paper an electric lithographic (EL) technique to generate protein patterns with sub-micrometer resolution on a poly(N-tBOC-2-aminoethyl methacrylate) surface. In the EL process, an electric potential is applied between metal patterns on a mask and the poly(N-tBOC-2-aminoethyl methacrylate) layer to electrochemically induce the dissociation of the tBOC from the amine functional groups. Proteins are then selectively attached to the amine functional groups in the modified polymer surface areas to form protein patterns. This technique can reliably generate high-resolution protein patterns down to approximately 300 nm on the polymer surface at a high speed with a simple process/system.  相似文献   

5.
Microstructuring of polydimethylsiloxane (PDMS) is a key step for many lab-on-a-chip (LOC) applications. In general, the structure is generated by casting the liquid prepolymer against a master. The production of the master in turn calls for special equipment and know how. Furthermore, a given master only allows the reproduction of the defined structure. We report on a simple, cheap and practical method to produce microstructures in already cured PDMS by direct UV-lithography followed by chemical development. Due to the available options during the lithographic process like multiple exposures, the method offers a high design flexibility granting easy access to complex and stepped structures. Furthermore, no master is needed and the use of pre-cured PDMS allows processing at ambient (light) conditions. Features down to approximately 5 μm and a depth of 10 μm can be realised. As a proof of principle, we demonstrate the feasibility of the process by applying the structures to various established soft lithography techniques.  相似文献   

6.
Nanosphere lithography (NSL) has been regarded as an inexpensive, inherently parallel, high-throughput, materials-general approach to the fabrication of nanoparticle arrays. However, the order of the resulting nanoparticle array is essentially dependent on the quality of the colloidal monolayer mask. Furthermore, the lateral feature size of the nanoparticles created using NSL is coupled with the diameter of the colloidal spheres, which makes it inconvenient for studying the size-dependent properties of nanoparticles. In this work, we demonstrate a facile approach to the fabrication of a large-area, transferrable, high-quality latex colloidal mask for nanosphere lithography. The approach is based on a combination of the air/water interface self-assembly method and the solvent-vapor-annealing technique. It enables the fabrication of colloidal masks with a higher crystalline integrity compared to those produced by other strategies. By manipulating the diameter of the colloidal spheres and precisely tuning the solvent-vapor-annealing process, flexible control of the size, shape, and spacing of the interstice in a colloidal mask can be realized, which may facilitate the broad use of NSL in studying the size-, shape-, and period-dependent optical, magnetic, electronic, and catalytic properties of nanomaterials.  相似文献   

7.
Sugawara K  Yugami A  Kadoya T  Kuramitz H  Hosaka K 《The Analyst》2012,137(16):3781-3786
To monitor protein-glycoprotein interactions on magnetic beads, the present study developed an electrochemical assay of the binding between concanavalin A (ConA) and ovalbumin (OVA). The system was a powerful model that could be used to evaluate cell junctions. ConA with an electroactive daunomycin was immobilized on 6 different sizes of magnetic beads (diameter: 1.0-8.9 μm) through a cross-linking agent. Six sizes of OVA-beads (diameter: 1.0-8.9 μm) were also prepared using a similar method. The binding was evaluated using an oxidation peak of ConA with daunomycin because ConA recognized OVA with α-mannose residues. When binding took place on the beads' surface, the peak current was decreased due to the electroactive moieties being covered with OVA. When ConA/daunomycin-OVA binding was evaluated, the change of the peak current obtained by the beads (diameter: 8.9 μm) modified with ConA and daunomycin was the greatest in the presence of OVA-modified beads (diameter: 2.5 μm). In contrast, particle agglomeration was observed for the smallest beads (diameter: 1.0 μm) with ConA/daunomycin and OVA. The results suggested that ConA-OVA binding depended on the size of beads. Thus, this method could be applied to measure protein-glycoprotein interactions on the cell surface.  相似文献   

8.
Replication of vertical features smaller than 2 nm by soft lithography   总被引:3,自引:0,他引:3  
This communication demonstrates a simple, soft lithographic approach to the replication and metrology of nanoscale vertical displacements. We patterned test structures with regular patterns that minimize artifacts in measurements by atomic force microscopy. A composite stamp of poly(dimethylsiloxane) (PDMS) molded against the original test structure served as a template to generate polyurethane replicas. We replicated vertical displacements down to approximately 1.5 nm. This replication demonstrates the capability of soft lithography to reproduce features with dimensions similar to those of large molecules.  相似文献   

9.
Site-selective Cu deposition on a Si substrate was achieved by a combination of colloidal crystal templating, hydrophobic treatment, and electroless plating. Uniformly sized nano/microstructures were produced on the substrate using a monolayer coating of colloidal spheres instead of a conventional resist. The Cu patterns obtained were of two different types: networklike honeycomb and isolated-island patterns with a minimum period of 200 nm. Each ordered pattern with the desired intervals was composed of clusters of Cu nanoparticles with a size range of 50-100 nm. By the present method, it is possible to control the periodicity of metal arrays by changing the diameter of the colloidal spheres used as an initial mask and to adjust the shape of the metal patterns by changing the mask structure for electroless plating.  相似文献   

10.
Patterning of sol gel based silica and silica–titania films has been developed at room temperature by soft lithographic technique. Corresponding metal alkoxides have been utilized for the preparation of precursor sols. Elastomeric stamps of polydimethylsiloxane (PDMS) are used to emboss patterns of a master grating on the as-prepared silica and silica–titania films obtained by sol gel process. Pressure-less capillary force lithography has been used to fabricate both 1-D and 2-D ordered structures of simple stripe patterns. A modified solvent assisted lithography and micro-molding in capillaries yielded stable and high fidelity 1-D structures for silica and silica–titania films over a large area.  相似文献   

11.
可用于色谱固定相的介孔氧化硅球材料的合成   总被引:6,自引:0,他引:6  
雷杰  余承忠  范杰  闫妍  屠波  赵东元 《化学学报》2005,63(8):739-744
采用非离子型嵌段高分子表面活性剂EO20PO30EO20 (P65)为结构导向剂, 正硅酸乙酯为硅源, 在酸性介质中, 静置法制备了微米级介孔氧化硅球. 通过改变合成温度、反应时间或者无机盐KCl的加入量, 可以调节介孔氧化硅球的直径(9.0~17.6 μm); 加入1,3,5-三甲苯(TMB)或者调节水热温度, 可以调节介孔氧化硅球的孔径(2.3~4.8 nm). 采用X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、激光散射粒度分布和对溶菌酶的吸附等方法, 对介孔氧化硅球的结构、孔性质、形貌、吸附性质等进行了表征. 实验发现, 孔径较小的介孔氧化硅球(≤4.3 nm)对溶菌酶的吸附不明显(≤42 mg/g), 而孔径(4.8 nm)大于溶菌酶直径的材料对溶菌酶有较大的吸附量(192 mg/g), 说明孔径均匀可调的介孔氧化硅球材料可以很好地用作体积排阻色谱柱的固定相.  相似文献   

12.
In summary, we have developed a new strategy for the fabrication of arrayed colloidal particles well-ordered nanometric holes of three or four fold symmetry by anisotropic reactive ion (plasma) etching of self-organized layers of colloidal spheres. We demonstrated that a mesoporous silica matrix with regular open windows could be used as a lithographic mask and the resulting arrangement of pores on a particle was dependent on the orientation of the colloidal particle stacking. A variety of organic and inorganic materials such as metals for metal-polymer composites, DNA and proteins, semiconducting and ceramic materials, and other polymers and small chemicals can be incorporated via chemical and physical attachment. Particles with patterned pores and composite particles by our nanomachining process can be used as novel functional materials in the field of electronics, photonics, and biotech areas.  相似文献   

13.
Nanoelectrode arrays consisting of vertically aligned carbon nanofibers were prepared through plasma enhanced chemical vapor deposition and patterned using hole‐mask colloidal lithography (HCL), a simple fabrication method employed as a cost‐effective patterning alternative to the conventional electron beam lithography. The density of the carbon nanofibers was easily altered by changing the concentration of the polystyrene spheres employed in HCL. Cyclic voltammetry and chronoamperometry were used to electrochemically characterize the arrays of different density. Results indicate that the density of the carbon nanofibers leads to differences in the macro/micro electroactive surface areas.  相似文献   

14.
In this overview, effects exerted on the motion and on heat and mass transfer of particulates injected into a thermal plasma are discussed, including an assessment of their relative importance in the context of thermal plasma processing of materials. Results of computer experiments are shown for particle sizes ranging from 5–50 μm, and for alumina and tungsten as sample materials. The results indicate that (i) the correction terms required for the viscous drag and the convective heat transfer due to strongly varying properties are the most important factors; (ii) noncontinuum effects are important for particle sizes <10 μm at atmospheric pressure, and these effects will be enhanced for smaller particles and/or reduced pressures; (iii) the Basset history term is negligible, unless relatively large and light particles are considered over long processing distances; (iv) thermophoresis is not crucial for the injection of particles into thermal plasmas; (v) turbulent dispersion becomes important for particle <10 μm in diameter; and (vi) vaporization describes a different particle heating history than that of the evaporation process which, however, is not a critical control mechanism for interphase mass transfer of particles injected into thermal plasmas.  相似文献   

15.
Nano/microstructure control and electrochemical etching of aluminium substrate using a honeycomb alumina mask fabricated by anodisation with self‐assembled spheres aligned on the aluminium surface were studied to directly control the initiation sites of pits. The transfer of the hexagonally ordered pattern of self‐assembled spheres to the aluminium substrate could be achieved by substantially suppressed anodic oxide growth under the spheres where selective electrochemical etching proceeded. That is, etch pits are generated only in the thinner areas or holes of the honeycomb alumina mask with a one‐to‐one correspondence. With this process, improvements in pit distribution density and the homogeneity of pit sizes, while avoiding excessive dissolution of the aluminium surface, could be achieved easily in comparison with the conventional method. The density of pits could also be controlled by changing the diameter of spheres used as an indirect mask. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This paper describes composite patterning elements that use a commercially available acryloxy perfluoropolyether (a-PFPE) in various soft lithographic techniques, including microcontact printing, nanotransfer printing, phase-shift optical lithography, proximity field nanopatterning, molecular scale soft nanoimprinting, and solvent assisted micromolding. The a-PFPE material, which is similar to a methacryloxy PFPE (PFPE-DMA) reported recently, offers a combination of high modulus (10.5 MPa), low surface energy (18.5 mNm(-1)), chemical inertness, and resistance to solvent induced swelling that make it useful for producing high fidelity patterns with these soft lithographic methods. The results are comparable to, and in some cases even better than, those obtained with the more widely explored material, high modulus poly(dimethylsiloxane) (h-PDMS).  相似文献   

17.
We use the "particle lithography" technique to fabricate randomly speckled spheres. Parts of positively charged 3.3 microm polystyrene microspheres were masked off with negatively charged 0.9 microm silica particles, and the remaining portion was covered with negatively charged 60 nm polystyrene nanoparticles. The masking particles were then removed to leave speckles on the larger core particle. Images from electron microscope and confocal microscope show that the diameter of the circular speckles is predictable and reliable, following an estimate from simple geometry, and that the number of speckles formed on a particle can be altered by changing the concentration of silica particle masks. The process described in this paper can be adapted to a wide variety of materials, opening the door for applications where size-controlled patches of one chemistry can appear on core particles of another chemistry and where the precise placement of patches is of little importance.  相似文献   

18.
We report on the fabrication in a single step of a channel grating loaded waveguide on Titanium based hybrid sol-gel material.This result has been accomplished by the merging of several lithographic techniques, namely conventional, laser interference, and soft lithography.Conventional lithographic processes have been employed for fabricating channel waveguides on a previously holographically written planar photopolymerizable sol-gel film. Such structures have been used as a master to produce a negative replica in polydimethylsiloxane (PDMS) and subsequently exploited to reproduce the master patterns by UV-nanoimprinting on photopolymerizable hybrid sol-gel coatings (titanium and 3-(trimethoxysilyl)propyl methacrylate).Optical and morphological characterization of the various fabrication steps and of the final device have been reported and discussed.  相似文献   

19.
Periodic arrays of organosilane nanostructures were prepared with particle lithography to define sites for selective adsorption of functionalized gold nanoparticles. Essentially, the approach for nanoparticle lithography consists of procedures with two masks. First, latex mesospheres were used as a surface mask for deposition of an organosilane vapor, to produce an array of holes within a covalently bonded, organic thin film. The latex particles were readily removed with solvent rinses to expose discrete patterns of nanosized holes of uncovered substrate. The nanostructured film of organosilanes was then used as a surface mask for a second patterning step, with immersion in a solution of functionalized nanoparticles. Patterned substrates were fully submerged in a solution of surface-active gold nanoparticles coated with 3-mercaptopropyltrimethoxysilane. Regularly shaped, nanoscopic areas of bare substrate produced by removal of the latex mask provided sites to bind silanol-terminated gold nanoparticles, and the methyl-terminated areas of the organosilane film served as an effective resist, preventing nonspecific adsorption on masked areas. Characterizations with atomic force microscopy demonstrate the steps for lithography with organosilanes and functionalized nanoparticles. Patterning was accomplished for both silicon and glass substrates, to generate nanostructures with periodicities of 200-300 nm that match the diameters of the latex mesospheres of the surface masks. Nanoparticles were shown to bind selectively to uncovered, exposed areas of the substrate and did not attach to the methyl-terminal groups of the organosilane mask. Billions of well-defined nanostructures of nanoparticles can be generated using this high-throughput approach of particle lithography, with exquisite control of surface density and periodicity at the nanoscale.  相似文献   

20.
A combination of soft lithographic printing and soft templating has been used to fabricate high-resolution interdigitated micro-supercapacitors (MSC). Surfactant-assisted self-assembly produces high surface area ordered mesoporous carbons (490 m2 g−1). For the first time, such precursors have been printed by nano-imprint lithography as microdevices with a line width of only 250 nm and a spacing of only 1 μm. The devices are crack-free with low specific resistance (1.2×10−5 Ωm) and show good device capacitance up to 0.21 F cm−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号