首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The RNA recognition motif (RRM), one of the most common RNA-binding domains, recognizes single-stranded RNA. A C-terminal helix that undergoes conformational changes upon binding is often an important contributor to RNA recognition. The N-terminal RRM of the U1A protein contains a C-terminal helix (helix C) that interacts with the RNA-binding surface of a beta-sheet in the free protein (closed conformation), but is directed away from this beta-sheet in the complex with RNA (open conformation). The dynamics of helix C in the free protein have been proposed to contribute to binding affinity and specificity. We report here a direct investigation of the dynamics of helix C in the free U1A protein on the nanosecond time scale using time-resolved fluorescence anisotropy. The results indicate that helix C is dynamic on a 2-3 ns time scale within a 20 degrees range of motion. Steady-state fluorescence experiments and molecular dynamics simulations suggest that the dynamical motion of helix C occurs within the closed conformation. Mutation of a residue on the beta-sheet that contacts helix C in the closed conformation dramatically destabilizes the complex (Phe56Ala) and alters the steady-state fluorescence, but not the time-resolved fluorescence anisotropy, of a Trp in helix C. Mutation of Asp90 in the hinge region between helix C and the remainder of the protein to Ala or Gly subtly alters the dynamics of the U1A protein and destabilizes the complex. Together these results show that helix C maintains a dynamic closed conformation that is stable to these targeted protein modifications and does not equilibrate with the open conformation on the nanosecond time scale.  相似文献   

2.
The eight-residue surface loop, 45-52 (Ser, Ala, Val, Gly, Asn, Ala, Glu, Ser), of the homotetrameric protein streptavidin has a "closed" conformation in the streptavidin-biotin complex, where the corresponding binding affinity is one of the strongest found in nature (ΔG ~ -18 kcal∕mol). However, in most of the crystal structures of apo (unbound) streptavidin, the loop conformation is "open" and typically exhibits partial disorder and high B-factors. Thus, it is plausible to assume that the loop structure is changed from open to closed upon binding of biotin, and the corresponding difference in free energy, ΔF = F(open) - F(closed) in the unbound protein, should therefore be considered in the total absolute free energy of binding. ΔF (which has generally been neglected) is calculated here using our "hypothetical scanning molecular-dynamics" (HSMD) method. We use a protein model in which only the atoms closest to the loop are considered (the "template") and they are fixed in the x-ray coordinates of the free protein; the x-ray conformation of the closed loop is attached to the same (unbound) template and both systems are capped with the same sphere of TIP3P water. Using the force field of the assisted model building with energy refinement (AMBER), we carry out two separate MD simulations (at temperature T = 300 K), starting from the open and closed conformations, where only the atoms of the loop and water are allowed to move (the template-water and template-loop interactions are considered). The absolute F(open) and F(closed) (of loop + water) are calculated from these trajectories, where the loop and water contributions are obtained by HSMD and a thermodynamic integration (TI) process, respectively. The combined HSMD-TI procedure leads to total (loop + water) ΔF = -27.1 ± 2.0 kcal∕mol, where the entropy TΔS constitutes 34% of ΔF, meaning that the effect of S is significant and should not be ignored. Also, ΔS is positive, in accord with the high flexibility of the open loop observed in crystal structures, while the energy ΔE is unexpectedly negative, thus also adding to the stability of the open loop. The loop and the 250 capped water molecules are the largest system studied thus far, which constitutes a test for the efficiency of HSMD-TI; this efficiency and technical issues related to the implementation of the method are also discussed. Finally, the result for ΔF is a prediction that will be considered in the calculation of the absolute free energy of binding of biotin to streptavidin, which constitutes our next project.  相似文献   

3.
In conventional “Venus Flytrap” mechanism, substrate-binding proteins (SBPs) interconvert between the open and closed conformations. Upon ligand binding, SBPs form a tightly closed conformation with the ligand bound at the interface of two domains. This mechanism was later challenged by many type III SBPs, such as the vitamin B12-binding protein BtuF, in which the apo- and holo-state proteins adopt very similar conformations. Here, we combined molecular dynamics simulation and Markov state model analysis to study the conformational dynamics of apo- and B12-bound BtuF. The results indicate that the crystal structures represent the only stable conformation of BtuF. Meanwhile, both apo- and holo-BtuF undergo large-scale interdomain motions with little energy cost. B12 binding casts little restraints on the interdomain motions, suggesting that ligand binding affinity is enhanced by the remaining conformational entropy of holo-BtuF. These results reveal a new paradigm of ligand recognition mechanism of SBPs. © 2019 Wiley Periodicals, Inc.  相似文献   

4.
The interdomain movements of the ligand binding domain (LBD) of mGluR1 in response to agonist or antagonist binding are studied by 2 ns molecular dynamics (MD) simulations. Our results indicate that MD is able to reproduce many of the experimentally determined features of the open and closed conformations of LBD. Analysis of the ligand behavior over time allows to delineate some of the molecular determinants responsible for the agonist-induced or antagonist-blocked LBD responses.  相似文献   

5.
The reaction mechanism of serine proteases (trypsin), which catalyze peptide hydrolysis, is studied theoretically by ab initio QM/MM electronic structure calculations combined with Molecular Dynamics-Free Energy Perturbation calculations. We have calculated the entire reaction free energy profiles of the first reaction step of this enzyme (acylation process). The present calculations show that the rate-determining step of the acylation is the formation of the tetrahedral intermediate, and the breakdown of this intermediate has a small energy barrier. The calculated activation free energy for the acylation is approximately 17.8 kcal/mol at QM/MM MP2/(aug)-cc-pVDZ//HF/6-31(+)G/AMBER level, and this reaction is an exothermic process. MD simulations of the enzyme-substrate (ES) complex and the free enzyme in aqueous phase show that the substrate binding induces slight conformational changes around the active site, which favor the alignment of the reactive fragments (His57, Asp102, and Ser195) together in a reactive orientation. It is also shown that the proton transfer from Ser195 to His57 and the nucleophilic attack of Ser195 to the carbonyl carbon of the scissile bond of the substrate occur in a concerted manner. In this reaction, protein environment plays a crucial role to lowering the activation free energy by stabilizing the tetrahedral intermediate compared to the ES complex. The polarization energy calculations show that the enzyme active site is in a very polar environment because of the polar main chain contributions of protein. Also, the ground-state destabilization effect (steric strain) is not a major catalytic factor. The most important catalytic factor of stabilizing the tetrahedral intermediate is the electrostatic interaction between the active site and particular regions of protein: the main chain NH groups in Gly193 and Ser195 (so-called oxyanion hole region) stabilize negative charge generated on the carbonyl oxygen of the scissile bond, and the main chain carbonyl groups in Ile212 approximately Ser214 stabilize a positive charge generated on the imidazole ring of His57.  相似文献   

6.
As a member of the death-associated protein kinase (DAPK) family, STK17B plays an important role in the regulation of cellular apoptosis and has been considered as a promising drug target for hepatocellular carcinoma. However, the highly conserved ATP-binding site of protein kinases represents a challenge to design selective inhibitors for a specific DAPK isoform. In this study, molecular docking, multiple large-scale molecular dynamics (MD) simulations, and binding free energy calculations were performed to decipher the molecular mechanism of the binding selectivity of PKIS43 toward STK17B against its high homology STK17A. MD simulations revealed that STK17A underwent a significant conformational arrangement of the activation loop compared to STK17B. The binding free energy predictions suggested that the driving force to control the binding selectivity of PKIS43 was derived from the difference in the protein–ligand electrostatic interactions. Furthermore, the per-residue free energy decomposition unveiled that the energy contribution from Arg41 at the phosphate-binding loop of STK17B was the determinant factor responsible for the binding specificity of PKIS43. This study may provide useful information for the rational design of novel and potent selective inhibitors toward STK17B.  相似文献   

7.
The conformational dynamics in the flaps of HIV-1 protease plays a crucial role in the mechanism of substrate binding. We develop a kinetic network model, constructed from detailed atomistic simulations, to determine the kinetic mechanisms of the conformational transitions in HIV-1 PR. To overcome the time scale limitation of conventional molecular dynamics (MD) simulations, our method combines replica exchange MD with transition path theory (TPT) to study the diversity and temperature dependence of the pathways connecting functionally important states of the protease. At low temperatures the large-scale flap opening is dominated by a small number of paths; at elevated temperatures the transition occurs through many structurally heterogeneous routes. The expanded conformation in the crystal structure 1TW7 is found to closely mimic a key intermediate in the flap-opening pathways at low temperature. We investigated the different transition mechanisms between the semi-open and closed forms. The calculated relaxation times reveal fast semi-open ? closed transitions, and infrequently the flaps fully open. The ligand binding rate predicted from this kinetic model increases by 38-fold from 285 to 309 K, which is in general agreement with experiments. To our knowledge, this is the first application of a network model constructed from atomistic simulations together with TPT to analyze conformational changes between different functional states of a natively folded protein.  相似文献   

8.
9.
The glutamine binding protein (GlnBP) binds l ‐glutamine and cooperates with its cognate transporters during glutamine uptake. Crystal structure analysis has revealed an open and a closed conformation for apo‐ and holo‐GlnBP, respectively. However, the detailed conformational dynamics have remained unclear. Herein, we combined NMR spectroscopy, MD simulations, and single‐molecule FRET techniques to decipher the conformational dynamics of apo‐GlnBP. The NMR residual dipolar couplings of apo‐GlnBP were in good agreement with a MD‐derived structure ensemble consisting of four metastable states. The open and closed conformations are the two major states. This four‐state model was further validated by smFRET experiments and suggests the conformational selection mechanism in ligand recognition of GlnBP.  相似文献   

10.
In the present study, the impacts of G198N and W128F mutations on the recognition between Aurora A and targeting protein of Xenopus kinesin-like protein 2 (TPX2) were investigated using molecular dynamics (MD) simulations, free energy calculations, and free energy decomposition analysis. The predicted binding free energy of the wild-type complex is more favorable than those of three mutants, indicating that both single and double mutations are unfavorable for the Aurora A and TPX2 binding. It is also observed that the mutations alternate the binding pattern between Aurora A and TPX2, especially the downstream of TPX2. An intramolecular hydrogen bond between the atom OD of Asp11(TPX2) and the atom HE1 of Trp34(TPX2) disappear in three mutants and thus lead to the instability of the secondary structure of TPX2. The combination of different molecular modeling techniques is an efficient way to understand how mutation has impacts on the protein-protein binding and our work gives valuable information for the future design of specific peptide inhibitors for Aurora A.  相似文献   

11.
CD4-mimetic HIV-1 entry inhibitors are small sized molecules which imitate similar conformational flexibility, in gp120, to the CD4 receptor. However, the mechanism of the conformational flexibility instigated by these small sized inhibitors is little known. Likewise, the effect of the antibody on the function of these inhibitors is also less studied. In this study, we present a thorough inspection of the mechanism of the conformational flexibility induced by a CD4-mimetic inhibitor, NBD-557, using Molecular Dynamics Simulations and free energy calculations. Our result shows the functional importance of Asn425 in substrate induced conformational dynamics in gp120. The MD simulations of Asn425Gly mutant provide a less dynamic gp120 in the presence of NBD-557 without incapacitating the binding enthalpy of NBD-557. The MD simulations of complexes with the antibody clearly show the enhanced affinity of NBD-557 due to the presence of the antibody, which is in good agreement with experimental Isothermal Titration Calorimetry results (Biochemistry 2006, 45, 10973–10980).  相似文献   

12.
The potential energy change during the M --> N process in bacteriorhodopsin has been evaluated by ab initio quantum chemical and advanced quantum chemical calculations following molecular dynamics (MD) simulations. Many previous experimental studies have suggested that the proton transfer from Asp96 to the Schiff base occurs under the following two conditions: (1) the hydrogen bond between Thr46 and Asp96 breaks and Thr46 is detached from Asp96 and (2) a stable chain of four water molecules spans an area from Asp96 --> Schiff base. In this work, we successfully reproduced the proton-transfer process occurring under these two conditions by molecular dynamics and quantum chemical calculations. The quantum chemical computation revealed that the proton transfer from Asp96 to Shiff base occurs in two-step reactions via an intermediate in which an H(3)O(+) appears around Ala215. The activation energy for the proton transfer in the first reaction was calculated to be 9.7 kcal/mol, which enables fast and efficient proton pump action. Further QM/MM (quantum mechanical/molecular mechanical) and FMO (fragment molecular orbital) calculations revealed that the potential energy change during the proton transfer is tightly regulated by the composition and the geometry of the surrounding amino acid residues of bacteriorhodopsin. Here, we report in detail the Asp96 --> Schiff base proton translocation mechanism of bacteriorhodopsin. Additionally, we discuss the effectiveness of combining quantum chemical calculations with truncated cluster models followed by advanced quantum chemical calculations applied to a whole protein to elucidate its reaction mechanism.  相似文献   

13.
Free energy calculations are increasingly being used to estimate absolute and relative binding free energies of ligands to proteins. However, computed free energies often appear to depend on the initial protein conformation, indicating incomplete sampling. This is especially true when proteins can change conformation on ligand binding, as free energies associated with these conformational changes are either ignored or assumed to be included by virtue of the sampling performed in the calculation. Here, we show that, in a model protein system (a designed binding site in T4 Lysozyme), conformational changes can make a difference of several kcal/mol in computed binding free energies, and that they are neglected in computed binding free energies if the system remains kinetically trapped in a particular metastable state on simulation timescales. We introduce a general "confine-and-release" framework for free energy calculations that accounts for these free energies of conformational change. We illustrate its use in this model system by demonstrating that an umbrella sampling protocol can obtain converged binding free energies that are independent of the starting protein structure and include these conformational change free energies.  相似文献   

14.
Alchemical free energy calculations play a very important role in the field of molecular modeling. Efforts have been made to improve the accuracy and precision of those calculations. One of the efforts is to employ a Hamiltonian replica exchange molecular dynamics (H-REMD) method to enhance conformational sampling. In this paper, we demonstrated that HREMD method not only improves convergence in alchemical free energy calculations but also can be used to compute free energy differences directly via the Free Energy Perturbation (FEP)algorithm. We show a direct mapping between the H-REMD and the usual FEP equations, which are then used directly to compute free energies. The H-REMD alchemical free energy calculation (Replica exchange Free Energy Perturbation, REFEP) was tested on predicting the pK(a) value of the buried Asp26 in thioredoxin. We compare the results of REFEP with TI and regular FEP simulations. REFEP calculations converged faster than those from TI and regular FEP simulations. The final predicted pK(a) value from the H-REMD simulation was also very accurate, only 0.4 pK(a) unit above the experimental value. Utilizing the REFEP algorithm significantly improves conformational sampling, and this in turn improves the convergence of alchemical free energy simulations.  相似文献   

15.
Anaplastic lymphoma kinase (ALK) has become as an important target for the treatment of various human cancers, especially non-small-cell lung cancer. A mutation, F1174C, suited in the C-terminal helix αC of ALK and distal from the small-molecule inhibitor ceritinib bound to the ATP-binding site, causes the emergence of drug resistance to ceritinib. However, the detailed mechanism for the allosteric effect of F1174C resistance mutation to ceritinib remains unclear. Here, molecular dynamics (MD) simulations and binding free energy calculations [Molecular Mechanics/Generalized Born Surface Area (MM/GBSA)] were carried out to explore the advent of drug resistance mutation in ALK. MD simulations observed that the exquisite aromatic-aromatic network formed by residues F1098, F1174, F1245, and F1271 in the wild-type ALK-ceritinib complex was disrupted by the F1174C mutation. The resulting mutation allosterically affected the conformational dynamic of P-loop and caused the upward movement of the P-loop from the ATP-binding site, thereby weakening the interaction between ceritinib and the P-loop. The subsequent MM/GBSA binding free energy calculations and decomposition analysis of binding free energy validated this prediction. This study provides mechanistic insight into the allosteric effect of F1174C resistance mutation to ceritinib in ALK and is expected to contribute to design the next-generation of ALK inhibitors.  相似文献   

16.
The ability to predict and characterize free energy differences associated with conformational equilibria or the binding of biomolecules is vital to understanding the molecular basis of many important biological functions. As biological studies focus on larger molecular complexes and properties of the genome, proteome, and interactome, the development and characterization of efficient methods for calculating free energy becomes increasingly essential. The aim of this study is to examine the robustness of the end-point free energy method termed the molecular mechanics Poisson-Boltzmann solvent accessible surface area (MM/PBSA) method. Specifically, applications of MM/PBSA to the conformational equilibria of nucleic acid (NA) systems are explored. This is achieved by comparing A to B form DNA conformational free energy differences calculated using MM/PBSA with corresponding free energy differences determined with a more rigorous and time-consuming umbrella sampling algorithm. In addition, the robustness of NA MM/PBSA calculations is also evaluated in terms of the sensitivity towards the choice of force field and the choice of solvent model used during conformational sampling. MM/PBSA calculations of the free energy difference between A-form and B-form DNA are shown to be in very close agreement with the PMF result determined using an umbrella sampling approach. Further, it is found that the MM/PBSA conformational free energy differences were also in agreement using either the CHARMM or AMBER force field. The influence of ionic strength on conformational stability was particularly insensitive to the choice of force field. Finally, it is also shown that the use of a generalized Born implicit solvent during conformational sampling results in free energy estimates that deviate slightly from those obtained using explicitly solvated MD simulations in these NA systems.  相似文献   

17.
A large series of pharmacological agents, distinct from the typical competitive antagonists, block in a noncompetitive manner the permeability response of the nicotinic acetylcholine receptor (nAChR) to the neurotransmitter acetylcholine. Taking the neuroleptic chlorpromazine (CPZ) as an example of such agents, the blocking mechanism of noncompetitive inhibitors to the ion channel pore of the nAChR has been explored at the atomic level using both conventional and steered molecular dynamics (MD) simulations. Repeated steered MD simulations have permitted calculation of the free energy (approximately 36 kJ/mol) of CPZ binding and identification of the optimal site in the region of the serine and leucine rings, at approximately 4 A from the pore entrance. Coulomb and the Lennard-Jones interactions between CPZ and the ion channel as well as the conformational fluctuations of CPZ were examined to assess the contribution of each to the binding of CPZ to the nAChR. The MD simulations disclose a dynamic interaction of CPZ binding to the nAChR ionic channel. The cationic ammonium head of CPZ forms strong hydrogen bonds with Glu262 (alpha), Asp268 (beta), Glu272 (beta), Ser276 (beta), Glu280 (delta), Gln271 (gamma), Glu275 (gamma), and Asn279 (gamma) nAChR residues. Finally, the conventional MD simulation of CPZ at its identified binding site demonstrates that the binding of CPZ not only blocks ion transport through the channel but also markedly inhibits the conformational transitions of the channel, necessary for nAChR to carry out its biological function.  相似文献   

18.
Pyrroline-5-carboxylate reductase (P5CR), an enzyme with conserved housekeeping roles, is involved in the etiology of cutis laxa. While previous work has shown that the R119G point mutation in the P5CR protein is involved, the structural mechanism behind the pathology remains to be elucidated. In order to probe the role of the R119G mutation in cutis laxa, we performed molecular dynamics (MD) simulations, essential dynamics (ED) analysis, and Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations on wild type (WT) and mutant P5CR-NAD complex. These MD simulations and ED analyses suggest that the R119G mutation decreases the flexibility of P5CR, specifically in the substrate binding pocket, which could decrease the kinetics of the cofactor entrance and egress. Furthermore, the MM-PBSA calculations suggest the R119G mutant has a lower cofactor binding affinity for NAD than WT. Our study provides insight into the possible role of the R119G mutation during interactions between P5CR and NAD, thus bettering our understanding of how the mutation promotes cutis laxa.  相似文献   

19.
c-Src and c-Abl are two closely related protein kinases that constitute important anticancer targets. Despite their high sequence identity, they show different sensitivities to the anticancer drug imatinib, which binds specifically to a particular inactive conformation in which the Asp of the conserved DFG motif points outward (DFG-out). We have analyzed the DFG conformational transition of the two kinases using massive molecular dynamics simulations, free energy calculations, and isothermal titration calorimetry. On the basis of the reconstruction of the free energy surfaces for the DFG-in to DFG-out conformational changes of c-Src and c-Abl, we propose that the different flexibility of the two kinases results in a different stability of the DFG-out conformation and might be the main determinant of imatinib selectivity.  相似文献   

20.
A method for computational design of protein–ligand interactions is implemented and tested on the asparaginyl‐ and aspartyl‐tRNA synthetase enzymes (AsnRS, AspRS). The substrate specificity of these enzymes is crucial for the accurate translation of the genetic code. The method relies on a molecular mechanics energy function and a simple, continuum electrostatic, implicit solvent model. As test calculations, we first compute AspRS‐substrate binding free energy changes due to nine point mutations, for which experimental data are available; we also perform large‐scale redesign of the entire active site of each enzyme (40 amino acids) and compare to experimental sequences. We then apply the method to engineer an increased binding of aspartyl‐adenylate (AspAMP) into AsnRS. Mutants are obtained using several directed evolution protocols, where four or five amino acid positions in the active site are randomized. Promising mutants are subjected to molecular dynamics simulations; Poisson‐Boltzmann calculations provide an estimate of the corresponding, AspAMP, binding free energy changes, relative to the native AsnRS. Several of the mutants are predicted to have an inverted binding specificity, preferring to bind AspAMP rather than the natural substrate, AsnAMP. The computed binding affinities are significantly weaker than the native, AsnRS:AsnAMP affinity, and in most cases, the active site structure is significantly changed, compared to the native complex. This almost certainly precludes catalytic activity. One of the designed sequences has a higher affinity and more native‐like structure and may represent a valid candidate for Asp activity. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号