首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Mesoporous materials are finding increasing utility in sensing applications. These applications can benefit from a surface area that may exceed 1,000 m2 g−1 and fast diffusion of analytes through a porous structure. This article reviews recent developments in mesoporous materials-based sensing and provides examples of the impact of different surface functionality, pore structure, and macro-morphology in an attempt to illustrate the contribution of these factors to the selectivity and sensitivity of a sensor response. The materials discussed include ordered mesoporous silicates synthesized with surfactants, hard templated ordered mesoporous carbons, and metal oxides with porous textures which have been applied to advantage in various detection schemes. Chemical functionalization of mesoporous materials through silane grafting, co-condensation, and adsorption are also addressed.  相似文献   

2.
CO hydrogenation to hydrocarbons through Fischer–Tropsch synthesis (FTS) reaction is one of the promising chemical processes, which can convert alternative feedstocks such as natural gas or biomass into synthetic fuels. The FTS reaction has received many attentions due to a limited petroleum resource with an increased demand for using alternative carbon sources such as stranded gas or shale gas. Some proper synthetic methods of an effective FTS catalyst having a larger active metal surface area and a lower deactivation rate are the most important issues for a long-term operation. Therefore, some ordered mesoporous materials (OMM) have been widely investigated in the field of CO hydrogenation using some heterogeneous catalysts. The present brief review paper summarized the various preparation methods of the ordered mesoporous materials for the possible applications of FTS reaction with a lower deactivation rate and a higher catalytic performance. The applications of the ordered mesoporous cobalt oxides for FTS reaction are briefly introduced and the ways to improve a structural stability even under reductive CO hydrogenation conditions by using efficient pillaring materials as well as by preparing mixed metal oxides. A higher catalytic activity of the ordered mesoporous cobalt oxide was also verified in a multi-channel fixed-bed compact reactor having the intersected interlayers of micro-channel heat exchanger. The thermal stability of ordered mesoporous cobalt-based catalysts was mainly affected by a structural stability which can easily remove the heavy hydrocarbons from the inner surfaces.  相似文献   

3.
Metal nanoparticles (NP) and mesoporous (MP) oxides are complementary materials, since the size scale of pores in MP oxides matches that of NP and both systems have potential applications in similar fields. Besides, nanocomposites obtained through their combination possess not only the intrinsic properties of each component, but also new features derived from the synergy between them, mainly due to the high interfacial area between the metal and the oxide. Thus, new optical, catalytic and sensing properties can be achieved that are not easily available from the individual components. In this review, we focus our attention on such NP@MP composites, not only from the point of view of the most common synthesis pathways but also briefly describing their applications in fields as diverse as (photo)catalysis, sensing, photochromism and other optical properties, as well as patterning.  相似文献   

4.
Recently, extensive works have been devoted to the morphology control of mesoporous materials with respect to their use in various applications. In this paper, we used two kinds of mesoporous silica, SBA-15 rods and spheres as hard templates to synthesize morphology-controllable mesoporous metal oxides. By carefully controlling the loading of metal precursors in the mesopores of the hard template, mesoporous Co3O4 and CeO2 with different morphologies, such as micrometer-sized rod, hollow sphere, saucer-like sphere, and solid sphere were conveniently obtained. The structural properties of these materials were characterized by XRD, BET, SEM and TEM. In addition, it is found that the differences observed in the textural properties of the two mesoporous metal oxides nanocasted from the same template can be attributed to the properties of metal precursors and the interaction between metal oxide and SiO2. Thus-obtained mesoporous metal oxides with such special morphologies may have a potential application in the field of environmental catalytic oxidation.  相似文献   

5.
The one-pot synthesis of alumina-supported metal oxides via self-assembly of a metal precursor and aluminum isopropoxide in the presence of triblock copolymer (as a structure directing agent) is described in detail for nickel oxide. The resulting mesoporous mixed metal oxides possess p6 mm hexagonal symmetry, well-developed mesoporosity, relatively high BET surface area, large pore widths, and crystalline pore walls. In comparison to pure alumina, nickel aluminum oxide samples exhibited larger mesopores and improved thermal stability. Also, long-range ordering of the aforementioned samples was observed for nickel molar percentages as high as 20%. The generality of the recipe used for the synthesis of mesoporous nickel aluminum oxide was demonstrated by preparation of other alumina-supported metal oxides such as MgO, CaO, TiO 2, and Cr 2O 3. This method represents an important step toward the facile and reproducible synthesis of ordered mesoporous alumina-supported materials for various applications where large and accessible pores with high loading of catalytically active metal oxides are needed.  相似文献   

6.
Ordered mesoporous Fe-doped NiO with dual mesopores, high surface area and well-interconnected crystalline porous frameworks have been synthesized via solvent evaporation-induced co-assembly (EICA) method, by using PS-b-P4VP as structure-directing agent, Ni(acac)2 and Fe (acac)3 as binary inorganic precursor, and showed superior ethanol sensing performances with good sensitivity, high selectivity and fast response-recovery dynamics.  相似文献   

7.
Work in mesoporous silica-based materials began in the early 1990s with work by Mobil. These materials had pore sizes from 20-500 A and surface areas of up to 1500 m(2) g(-1) and were synthesized by a novel liquid crystal templating approach. Researchers subsequently extended this strategy to the synthesis of mesoporous transition metal oxides, a class of materials useful in catalysis, electronic, and magnetic applications because of variable oxidation states, and populated d-bands-features not found in silicates. These materials are already showing promise in electronic and optical applications hinging on the semiconducting properties of transition metal oxides and their potential to act as electron acceptors, an important feature in the design of cathodic materials. This is the first general review of non-silicate mesoporous materials and will focus on recent advances in this area, emphasizing materials possessing unique electronic, magnetic, or optical properties. Also covered are advances in the synthesis and applications of mesostructured sulfides as well as a new class of template-synthesized platinum-based materials that show promise in heterogeneous catalysis.  相似文献   

8.
一维金属氧化物纳米材料由于其特殊的结构和性质而倍受关注,通过负载、填充或包裹等修饰方法可以进一步提高和改善其性能。本文综述了一维金属氧化物的一些应用以及制备方法,并对一维金属氧化物的修饰方法以及进展进行了评述。  相似文献   

9.
《中国化学快报》2019,30(12):2003-2008
Mesoporous late-transition metal oxides have great potential in applications of energy,catalysis and chemical sensing due to their unique physical and chemical properties.However,their synthesis via the flexible and scalable soft-template method remain a great challenge,due to the weak organic-inorganic interaction between the frequently used surfactants(e.g.,Pluronic-type block copolymers) and metal oxide precursors,and the low crystallization temperature of metal oxides.In this study,ordered mesoporous NiO with dual mesopores,high surface area and well-interconnected crystalline porous frameworks have been successfully synthesized via the facile solvent evaporation-induced co-assembly(EICA) method,by using lab-made amphiphilic diblock copolymer polystyrene-b-poly(4-vinylpyridine)(PS-b-P4 VP) as both the structure-directing agent(the soft template) and macromolecular chelating agents for nickel species,THF as the solvent,and nickel acetylacetonate(Ni(acac)2) as inorganic precursor.Similarly,by using Ni(acac)2 and Fe(acac)3 as the binary precursors,ordered mesoporous Fedoped NiO materials can be obtained,which have bimodal mesopores of large mesopores(32.5 nm) and secondary mesopores(4.0-11.5 nm) in the nanocrystal-assembled walls,high specific surface areas(~74.8 m~2/g) and large pore value(~0.167 cm~3/g).The obtained mesoporous Fe-doped NiO based gas sensor showed superior ethanol sensing performances with good sensitivity,high selectivity and fast response-recovery dynamics.  相似文献   

10.
Transition-metal-oxide materials possessing ordered mesoporosity have recently attracted significant research interest due to their numerous potential applications. Among them, ordered mesoporous zinc oxide (ZnO) is a very tempting material because of the importance of ZnO in heterogeneous catalysis. Here, first results of the preparation of ordered mesoporous ZnO materials by using different templates are reported. Porous materials with high surface area, different pore sizes, and nanocrystalline ZnO walls were obtained. Furthermore, we compare the two fundamental templating techniques, involving liquid crystals or ordered mesoporous carbon materials as templates. Regarding the formation of mesoporous ZnO, it was evident that the hard-matter carbon template is superior.  相似文献   

11.
金属有机骨架(Metal-Organic Framework,MOF)复合材料是一种新型功能性材料,其中金属氧化物@MOF复合材料因结合了金属氧化物和MOFs的许多特性而受到人们的广泛关注,成为近年来MOFs材料研究的一个重要方向。本文综述了金属氧化物@MOF复合材料制备方法的研究进展,主要包括外延生长法、气相沉积法、模板法等,并分析了它们各自的优缺点;概述了金属氧化物@MOF复合材料在催化、传感、生物医药、吸附与分离方面的具体应用性能,以及在电化学研究领域的潜在应用;并提出今后金属氧化物@MOF复合材料研究的主要方向是开发简单高效的制备方法、选取新功能性金属氧化物以及探索复合材料的其它新型结构,以拓展其在工业上的应用。  相似文献   

12.
In this paper, we will thoroughly review a novel and versatile self-formation phenomenon that can be exploited to target porous hierarchies of materials without need of any external templates only on the basis of the chemistry of metal alkoxides and alkylmetals. These hierarchically porous materials have unique structures, which are made of either parallel funnel-like/straight macrochannels or 3D continuous interconnected macroporous foams with micro/mesoporous walls. The self-generated porogen mechanism has been proposed, leading to a series of techniques to tailor porous hierarchy, i.e. the use of different chemical precursors (single metal alkoxides, mixed metal alkoxides, single molecular precursors with two different alkoxide functionalities, alkylmetals, etc., …), the control of their hydrolysis and condensation rates (pH, chelating agents,…) and the addition of alkoxysilanes as co-reactant. Various chemical compositions from single or binary metal oxides, to aluminosilicates, aluminophosphates, silicoaluminophosphates, metallophosphates,… can be prepared, offering a panel of potential applications. Some perspectives have been proposed to transform the synthesized materials with a hierarchy of pore sizes to micro-meso-macroporous crystalline materials with zeolite architectures. The advantages of this self-formation preparation method have been discussed compared to traditional templating methods. The possibility to combine with other strategies, for example soft or hard templating, to target even more sophisticated hierarchically meso-macroporous materials with specific structure and function for various applications has been presented. The "hierarchical catalysis" concept has been re-visited.  相似文献   

13.
This tutorial review highlights some active areas of research into non-oxide sol-gel chemistry. These aim to capture some of the advantages of methods developed mainly with oxides for a new generation of functional materials based on main group and metal nitrides, and semiconducting chalcogenides. Sol-gel processing has a long track record in producing useful materials for optical, magnetic, electrical, catalytic and structural applications. Controlled morphologies can be produced on all lengths scales, from ordered mesoporous arrays to thin films, fibres and monoliths. Hence there is an opportunity to produce new morphologies in non-oxides and hence new applications of these materials.  相似文献   

14.
In recent years, research efforts in the field of ordered mesoporous materials are shifting towards either hybrid materials, containing both inorganic (typically silica) and organic functionalities, or towards variants that do not contain silica at all. Promising examples of hybrid materials are periodic mesoporous organosilicas (PMOs); examples of non-siliceous mesoporous materials are carbons, polymers and metal oxides. They can be further tuned to obtain structures with a wide range of functional groups, and are candidates for applications in adsorption, catalysis, sensoring, microelectronics and several other applications.  相似文献   

15.
In this paper, we bring forward an effective strategy, solvothermal postsynthesis, to prepare ordered mesoporous silica materials with highly branched channels. Structural characterizations indicate that the titled mesoporous materials basically have the cubic double gyroidal (space group Ia-3d) structure with small fraction of distortions. The mesopore sizes and surface areas can be up to 8.8 nm and 540 m2/g, respectively, when microwave digestion is employed to remove the organic templates. A phase transition model is proposed, and possible explanations for the successful phase transition are elucidated. The results show that the flexible inorganic framework, high content of organic matrix, and nonpenetration of poly(ethylene oxide) segments may facilitate the structural evolution. This new synthetic strategy can also be extended to the preparation of other double gyroidal silica-based mesoporous materials, such as metal and nonmetal ions doped silica and organo-functionalized silica materials. The prepared 3D mesoporous silica can be further utilized to fabricate various ordered crystalline gyroidal metal oxide "negatives". The mesorelief "negatives" (Co3O4 and In2O3 are detailed here) prepared by impregnation and thermolysis procedures exhibit undisplaced, displaced, and uncoupled enantiomeric gyroidal subframeworks. It has been found that the amount of metal oxide precursors (hydrated metal nitrates) greatly influence the (sub)framework structure and single crystallinity of the mesorelief metal oxide particles. The single crystalline gyroidal metal oxides are ordered both at mesoscale and atomic scale. However, these orders are not commensurate with each other.  相似文献   

16.
非硅基介孔材料和介孔复合体的合成与特性   总被引:2,自引:0,他引:2  
非硅基介孔材料和介孔复合体的合成与特性;介孔固体;介孔复合体;二氧化钛薄膜;液晶模板机理  相似文献   

17.
Currently, ordered mesoporous materials prepared through the self‐assembly of surfactants have attracted growing interests owing to their special properties, including uniform mesopores and a high specific surface area. Here we focus on fine controls of compositions, morphologies, mesochannel orientations which are important factors for design of mesoporous materials with new functionalities. This Review describes our recent progress toward advanced mesoporous materials. Mesoporous materials now include a variety of inorganic‐based materials, for example, transition‐metal oxides, carbons, inorganic‐organic hybrid materials, polymers, and even metals. Mesoporous metals with metallic frameworks can be produced by using surfactant‐based synthesis with electrochemical methods. Owing to their metallic frameworks, mesoporous metals with high electroconductivity and high surface areas hold promise for a wide range of potential applications, such as electronic devices, magnetic recording media, and metal catalysts. Fabrication of mesoporous materials with controllable morphologies is also one of the main subjects in this rapidly developing research field. Mesoporous materials in the form of films, spheres, fibers, and tubes have been obtained by various synthetic processes such as evaporation‐mediated direct templating (EDIT), spray‐dried techniques, and collaboration with hard‐templates such as porous anodic alumina and polymer membranes. Furthermore, we have developed several approaches for orientation controls of 1D mesochannels. The macroscopic‐scale controls of mesochannels are important for innovative applications such as molecular‐scale devices and electrodes with enhanced diffusions of guest species. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 321–339; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200900022  相似文献   

18.
Control of the size, shape, and structure of mesoporous transition metal oxide materials is important in their correlations with corresponding optoelectronic and photocatalytic properties. Highly ordered cubic phases of mixed-valent mesoporous molybdenum oxides have been prepared by the reduction and decomposition of aqueous molybdenum precursor solution in the presence of poly(ethylene oxide) under ultrasonic irradiation. Large-scale uniform molybdenum oxide particles with well-defined crystal-like morphologies (ball-like, rhombic dodecahedral, and cubic shapes) were synthesized and found to be controllable by modifying the molecular chain length of the polymeric additive. Molybdenum oxides with an average oxidation state of 4.8 form a cubic lattice of open mesoporous structures.  相似文献   

19.
Microporous zeolites and ordered mesoporous (organo)silicas have been widely used as electrode modifiers because of their attractive properties (ion exchange and size selectivity of zeolites, well ordered nanoreactors containing a high number of widely accessible active centers in mesoporous (organo)silicas). These properties have been intelligently combined to selected redox processes to improve the response of the resulting modified electrodes or to design novel electrochemical detection schemes. This up‐to‐date review provides the recent advances made in the electroanalytical applications of zeolite modified electrodes and discusses the interest of ordered mesoporous (organo)silica materials in electroanalysis.  相似文献   

20.
This review focuses on recent developments in the preparation, properties and catalytic applications of chemically modified mesoporous silicas. Over the last few years, this group of materials has been the subject of intense activity in the materials community, and many applications have been found for these fascinating materials. This non-exhaustive review aims to highlight the key features of the materials, which are relevant and important to catalysis, and illustrates their utility with a series of recent examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号