首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is of vital importance to accelerate the sluggish oxygen reduction reaction(ORR)process at the cathode with earth-abundant metal-based catalysts for the commercialization of low-temperature polymer electrolyte membrane fuel cells.In consideration of high catalytic activity,long-term stability and low cost of potential ORR electrocatalysts,transition metal species have attracted much interest and transition metal-nitrogen-carbon(M-N/C,M=Fe,Co,Ni,Mn,etc.)catalysts have been widely considered as the most promising non-precious metal catalysts for ORR.Herein,the fundamental understanding of ORR catalytic mechanism and the identification of active centers are briefly introduced,and then different M-N/C catalysts classified by precursors with the strategies for design and optimization are highlighted.The challenges and possible opportunity for future development of high-performance ORR catalysts are finally proposed.  相似文献   

2.
A highly active nitrogen-doped catalyst with a unique red-blood-cell(RBC) like structure is reported for oxygen reduction reaction(ORR).The catalyst Fe,N-C@carbon-900 was prepared by pyrolysis of the polyaniline(PANl) and polystyrene(PS) composites with adsorption of ferric ion on the shell of sphere structure at 900℃.Fe,N-C@carbon-900 with a unique RBC-like structure provides plenty of catalytic sites combining the electrical conductivity of the carbon sphere with the catalytic activity of the nitrogen-doped layer.The four-electron reduction pathway is selected for the catalyst Fe,N-C@carbon-900.The catalyst exhibit the ORR E_(onset) at 0.87 V(potentials is versus to reversible hydrogen electrode(RHE)),E_(1/2) at 0.78 V and high diffusion-limiting current density(5.20mA/cm~2).Furthermore,this work indicates that both N and Fe accounted for high activity of the catalyst Fe,N-C@carbon-900 toward the oxygen reduction process.It is concluded that Fe and N exhibit synergistically promotion in the ORR activity for the catalyst Fe,N-C@carbon-900.We also provide a rational design of electrocatalysts with high ORR activity to further clarify the essential ORR sites of heteroatom doped carbon materials for fuel cells and metal-air battery applications.  相似文献   

3.
The pyrolyzed carbon supported ferrum polypyrrole(Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid(TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction(ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry(CV) and rotating disk electrode(RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600℃ gives the best ORR activity. An onset potential and the potential at the current density of-1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction(XRD), scanning electron microscope(SEM) and X-ray photoelectron spectroscopy(XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C–Sn–C, an additional beneficial factor for the ORR.  相似文献   

4.
The pyrolyzed carbon supported ferrum polypyrrole(Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid(TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction(ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry(CV) and rotating disk electrode(RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600℃ gives the best ORR activity. An onset potential and the potential at the current density of-1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction(XRD), scanning electron microscope(SEM) and X-ray photoelectron spectroscopy(XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C–Sn–C, an additional beneficial factor for the ORR.  相似文献   

5.
《Journal of Energy Chemistry》2017,26(6):1187-1195
This work proposed a simple and efficient approach for synthesis of durable and efficient non-precious metal oxygen reduction reaction(ORR) electro-catalysts in MFCs. The rod-like carbon nanotubes(CNTs)were formed on the Fe–N/SLG sheets after a carbonization process. The maximum power density of1210 ± 23 m W·m~(-2) obtained with Fe–N/SLG catalyst in an MFC was 10.7% higher than that of Pt/C catalyst(1080 ± 20 mW ·m~(-2)) under the same condition. The results of RDE test show that the ORR electron transfer number of Fe–N/SLG was 3.91 ± 0.02, which suggested that ORR catalysis proceeds through a four-electron pathway. The whole time of the synthesis of electro-catalysts is about 10 h, making the research take a solid step in the MFC expansion due to its low-cost, high efficiency and favorable electrochemical performance. Besides, we compared the electrochemical properties of catalysts using SLG, high conductivity graphene(HCG, a kind of multilayer graphene) and high activity graphene(HAG, a kind of GO) under the same conditions, providing a solution for optimal selection of cathode catalyst in MFCs.The morphology, crystalline structure, elemental composition and ORR activity of these three kinds of Fe–N/C catalysts were characterized. Their ORR activities were compared with commercial Pt/C catalyst.It demonstrates that this kind of Fe–N/SLG can be a type of promising highly efficient catalyst and could enhance ORR performance of MFCs.  相似文献   

6.
Reasonable construction of high activity and low cost non-noble metal oxygen reduction reaction(ORR) catalyst is of great importance for the wide application of zinc-air batteries(ZABs). Using bimetallic MOF as a precursor combined with electrospinning, high-temperature carbonization and electrodeposition, we successfully developed a porous carbon nanofiber(Co@Fe-CNFs-1000) with bimetallic active center as an efficient catalyst for ORR. The successful construction of this special core-shell stru...  相似文献   

7.
Cathode catalysts for direct alcohol fuel cells (DAFCs) must have high catalytic activity for the oxy‐gen reduction reaction (ORR), low cost, and high tolerance to the presence of methanol or ethanol. Pt is the benchmark catalyst for this application owing to its excellent electrocatalytic activity, but its high cost and low tolerance to the organic fuel permeating through the membrane have hindered the commercialization of DAFCs. Herein we present a facile synthesis route to obtain organic fuel‐tolerant Zr‐ and Ta‐based catalysts supported on carbon. This method consists of a simple precipitation of metal precursors followed by a heat treatment. X‐ray diffraction analyses confirmed that the obtained samples were crystalline ZrO2?x and Na2Ta8O21?x having crystallite sizes of 26 and 32 nm, respectively. The thermal treatment effectively increased the activity of the catalysts to‐wards the ORR, although further optimization is necessary. Both catalysts exhibited a high tolerance to the presence of methanol with only a moderate reduction in ORR activity even at high methanol concentration (0.5 mol/L).  相似文献   

8.
Developing large-scale and highly efficient oxygen reduction reaction(ORR)catalysts acts a vital role in realizing wide application of metal–air batteries.Here,we propose a gas-foaming strategy to fabricate sustainable and 3D hierarchically porous N-doped carbon with high specific surface area and abundant defects sites derived from biomass.The obtained catalyst exhibits prominent ORR property with higher half-wave potential(0.861 V)and slightly lower kinetic current density(32.44 m A cm^-2),compared to Pt/C(0.856 V and 43.61 m A cm^-1).Furthermore,employing it as catalyst of air cathode,the Al–air battery delivers remarkable discharge performance with excellent power density of 401 m W cm^-2,distinguished energy density of 2453.4 Wh kg^-1 and extremely high open-circuit voltage of 1.85 V among the reported metal–air batteries in the literatures.This gas-foaming strategy for full utilization of biomass affords a chance to explore scalable advanced catalysts in metal–air battery.  相似文献   

9.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

10.
Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous Co_3O_4 with improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than Co_3O_4 prepared by traditional thermal-decomposition method(noted as Co_3O_4-T) and commercial IrO_2 catalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than Co_3O_4-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions.  相似文献   

11.
《中国化学快报》2021,32(8):2427-2432
Developing high-efficiency,inexpensive,and steady non-precious metal oxygen reduction reaction(ORR) catalysts to displace Pt-based catalysts is significant for commercial applications of Al-air battery.Here,we have prepared the Cu/Cu_2 O-NC catalyst with excellent ORR performance and high stability,due to the synergistic effect of Cu and Cu_2 O nanoparticles.The half-wave potential(0.8 V) and the limiting-current density(5.20 mA/cm~2) of the Cu/Cu_2 O-NC are very close to those of the 20% Pt/C catalyst(0.82 V,5.10 mA/cm~2).Besides,it exhibits excellent performance with a maximal power density of 250 mW/cm~2 and a stable continuous discharge for more than 90 h in the Al-air battery test The promoting effects of Cu_2 O towards Cu-based ORR catalysts are illustrated as follows:(ⅰ) Cu_2 O is the major ORR active site by the redox of Cu(Ⅱ)/Cu(Ⅰ),which provides excellent ORR activities;(ⅱ) Cu can stabilize the location of Cu_2 O by assisting the electron transfer to Cu(Ⅱ)/Cu(Ⅰ) redox,which is conducive to the high stability of the catalyst.This work provides a useful strategy for enhancing the ORR performance of Cu-based catalysts.  相似文献   

12.
Oxygen electrode catalysts are important as inter-conversion of O2 and H2O is crucial for energy technologies.However,the sluggish kinetics of oxygen reduction and evolution reactions(ORR and OER)are a hindrance to their scalable production,whereas scarce and costly Pt and Ir/Ru-based catalysts with the highest electrocatalytic activity are commercially unviable.Since good ORR catalysts are not always efficient for OER and vice versa,so bifunctional catalysts on which OER and ORR occurs on the same electrode are very desirable.Alternative catalysts based on heteroatom-doped carbon nanomaterials,though showed good electrocatalytic activity yet their high cost and complex synthesis is not viable for scalable production.To overcome these drawbacks,biomass-derived heteroatom-doped porous carbons have recently emerged as low-cost,earth-abundant,renewable and sustainable environment-friendly materials for bifunctional oxygen catalysts.The tunable morphology,mesoporous structure and high concentration of catalytic active sites of these materials due to heteroatom(N)-doping could further enhance their ORR and OER activity,along with tolerance to methanol crossover and good durability.Thus,biomassderived heteroatom-doped porous carbons with large surface area,rich edge defects,numerous micropores and thin 2 D nanoarchitecture could be suitable as efficient bifunctional oxygen catalysts.In the present article,synthesis,N-doping,ORR/OER mechanism and electrocatalytic performance of biomassderived bifunctional catalysts has been discussed.The selected biomass(chitin,eggs,euonymus japonicas,tobacco,lysine and plant residue)except wood,act as both C and N precursor,resulting in N selfdoping of porous carbons that avoids the use of toxic chemicals,thus making the synthesis a facile and environment-friendly green process.The synthetic strategy could be further optimized to develop future biomass-based N self-doped porous carbons as metal-free high performance bifunctional oxygen catalysts for commercial energy applications.Recent advances and the importance of biomass-based bifunctional oxygen catalysts in metal-air batteries and fuel cells has been highlighted.The material design,perspectives and future directions in this field are also provided.  相似文献   

13.
The catalytic conversion of 5-hydroxymethylfurfural(HMF) to 2,5-dimethylfuran(DMF) has attracted extensive research interests because DMF can be used as potential and competitive renewable transportation fuel or additives. Here we report a non-noble bimetallic catalyst with improved activity for hydrogenation and hydrogenolysis by introducing active carbon as support into a nickel–cobalt catalyst. The characterizations of the catalyst indicate that the Ni and Co species are uniformly dispersed on the active carbon through the wetness impregnation method. The influences of reaction temperature and hydrogen pressure are systematically investigated and an excellent yield(up to 95%) of DMF can be obtained at relatively mild conditions, 130 °C and 1 MPa H_2, over the carbon supported Ni–Co bimetallic catalyst. The high catalytic activity originates from the synergistic effect between Ni and CoO xspecies, the high BET surface area of the catalyst, and the uniform dispersion of Ni and Co species on the active carbon. The catalyst could be reused for 5 times without loss of activity in a batch reactor. Futhermore, the conversion of HMF to DMF on a fixed-bed reactor was also investigated and the 2%Ni–20%Co/C catalyst exhibited an excellent yield to DMF(90%) for 71 h time on stream, indicating the high activity and stability of the catalyst.  相似文献   

14.
Composite oxide FeO x /Al 2 O 3 -supported gold catalysts were prepared by a modified two-step method. The effects of preparation conditions on the initial catalytic activity and long-time stability were studied for CO oxidation. XRD, XPS and in situ FTIR were employed to investigate the state of FeO x and the species on the catalyst surface. The results showed that Au/FeO x /Al 2 O 3 catalysts prepared by this method exhibited high activity and high stability in a wide pH value range. Calcination pretreatment was proved to be beneficial to improving the activity and stability. The beneficial effects of FeO x acting as a structural promoter could be ascribed to the ability to supply active oxygen species. As the precursor of FeO x , Fe(NO 3 ) 3 is superior to FeCl 3 for obtaining higher stability.  相似文献   

15.
In this paper,we synthesized cathode catalysts(PANI-PPYR,Fe/PANI-PPYR,Co/PANI-PPYR and Fe-Co/PANI-PPYR)with high performance oxygen reduction by using a simple heat treatment process.These catalysts were fabricated by directly calcining the Fe and/or Co doped polyaniline(PANI)-polypyrrole(PPYR)composites.Their electrocatalytic activity for ORR both in acidic and in alkaline media was investigated by voltammetric techniques.Among the prepared catalysts,Co/PANI-PPYR presents the most positive ORR onset potential of 0.62 V(vs.SCE)in 0.5 mol/L H2SO4 solution or?0.09 V(vs.SCE)in 1 mol/L NaOH solution.In addition,the Co/PANI-PPYR catalyst shows the largest limiting-diffusion current density for ORR,which is 4.3 mA/cm2@0.2 V(vs.SCE)in acidic and 2.3 mA/cm2@?0.3 V(vs.SCE)in alkaline media.In acidic media,a four-electron reaction of ORR on the Co/PANI-PPYR and Fe/PANI-PPYR catalysts is more dominant than a two-electron reaction.In alkaline media,however,a four-electron and a two-electron mechanisms are co-present for the ORR on all the prepared catalysts.Co/PANI-PPYR catalyst also presents good electrocatalytic activity stability for ORR both in acidic and in alkaline media.  相似文献   

16.
Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum casting was introduced to prepare Fe-N_x-C oxygen reduction reaction(ORR) catalysts with high efficient in acid medium. The catalysts were prepared with ammonium ferrous sulfate hexahydrate(AFS) and 1,10-phenanthroline monohydrate utilizing homemade mesoporous silica template. The heat treatment and its influence on structure and performance were systematically evaluated to achieve superior ORR performance and some clues were found. And 850 ℃ was found to be the best temperature for the first and second pyrolysis. The linear sweep voltammetry(LSV) results showed that there were only 18 mV slightly negative shifts of half-wave potential(E_(1/2)) of the optimal catalyst(749 mV) compared with the commercial Pt/C(20 μg·Pt·cm~(-2)). Besides, I850 R also showed better electrochemical stability and methanol-tolerance than that of Pt/C. All evidences proved that our vacuum casting reacting strategy and heat treatment process were prospective for the future RD of high performance Fe-N_x-C ORR catalysts.  相似文献   

17.
Efficient bifunctional oxygen electrocatalysts for ORR and OER are fundamental to the development of high performance metal-air batteries.Herein,a facile cost-efficient two-step pyrolysis strategy for the fabrication of a bifunctional oxygen electrocatalyst has been proposed.The efficient non-preciousmetal-based electrocatalyst,Fe/Fe3C@Fe-Nx-C consists of highly curved onion-like carbon shells that encapsulate Fe/Fe3C nanoparticles,distributed on an extensively porous graphitic carbon aerogel.The obtained Fe/Fe3C@Fe-Nx-C aerogel exhibited superb electrochemical activity,excellent durability,and high methanol tolerance.The experimental results indicated that the assembly of onion-like carbon shells with encapsulated Fe/Fe3C yielded highly curved carbon surfaces with abundant Fe-Nxactive sites,a porous structure,and enhanced electrocatalytic activity towards ORR and OER,hence displaying promising potential for application as an air cathode in rechargeable Zn-air batteries.The constructed Zn-air battery possessed an exceptional peak power density of~147 mW cm-2,outstanding cycling stability(200 cycles,1 h per cycle),and a small voltage gap of 0.87 V.This study offers valuable insights regarding the construction of low-cost and highly active bifunctional oxygen electrocatalysts for efficient air batteries.  相似文献   

18.
19.
Alkaline hydrazine liquid fuel cells(AHFC) have been highlighted in terms of high power performance with non-precious metal catalysts.Although Fe-N-C is a promising non-Pt electrocatalyst for oxygen reduction reaction(ORR),the surface density of the active site is very low and the catalyst layer should be thick to acquire the necessary number of catalytic active sites.With this thick catalyst layer,it is important to have an optimum pore structure for effective reactant conveyance to active site...  相似文献   

20.
The rational design and development of cost-effective,high-performance,and stable bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts are essential for rechargeable zinc-air batteries.Herein,a novel FeCo composite composed of alloy nanoparticles embedded in an N,S dual-doped carbon matrix(FeCo/NSC)was prepared via one-step carbonization of amphiphilic dodecanethiol-metal salts wrapped in carbon nitride(C3N4).The compact combination of dual metalalloys and dual-doped carbon endowed the composite with the active sites for the ORR and OER,achieving efficient electrical transmission and highly efficient bifunctional catalytic performance.The obtained FeCo-1/NSC catalyst exhibited excellent electrocatalytic activity with a half-wave potential of 0.82 V(vs.RHE)for the ORR and a low overpotential of 0.325 V at 10 mA cm-2 for the OER.The liquid Zn-air battery with FeCo-1/NSC as an air electrode displayed excellent charge-discharge performance,high power density,and robust charge-discharge stability for 150 h compared to the 20%Pt/C+RuO2 counterpart.Furthermore,the FeCo-1/NSC-based flexible solid-state Zn-air battery exhibited a higher power density and good charge-discharge stability over 10 h of operation.Thus,a promising strategy for bifunctional electrocatalyst development as part of rechargeable and wearable Zn-air batteries was provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号