首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swavey S  Brewer KJ 《Inorganic chemistry》2002,41(24):6196-6198
The mixed-metal supramolecular complex, [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) coupling two ruthenium light absorbers (LAs) to a central rhodium, has been shown to photocleave DNA. This system possesses a lowest lying metal to metal charge transfer (MMCT) excited state in contrast to the metal to ligand charge transfer states (MLCT) of the bpm and Ir analogues. The systems with an MLCT excited state do not photocleavage DNA. [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) is the first supramolecular system shown to cleave DNA. It functions through an excited state previously unexplored for this reactivity, a Ru --> Rh MMCT excited state. This system functions when irradiated with low energy visible light with or without molecular oxygen.  相似文献   

2.
基于金属氧化物催化剂的低碳烷烃选择氧化是催化研究的一个热点和难点, 而认识催化剂的结构与其催化性能之间的关系对于获得高效催化剂, 解决低碳烷烃选择氧化反应中存在的问题至关重要. 本文围绕催化剂的结构对其催化性能的影响, 概述了V-P-O、V-Sb-O、Mo-V-Te-Nb-O和V-Mg-O等几类典型的氧化物催化剂体系在这方面的研究进展. 结合我们开发的Re-Sb-O催化剂体系, 分析了多功能中心、活性位分离、两相协同效应等方面对金属氧化物催化剂的催化性能的影响. 这些认识将有助于设计合成性能优异的催化剂及实现低碳烷烃的选择氧化活化和定向转化.  相似文献   

3.
Strong metal–support interaction of supported metal catalysts is an important concept to describe the effect of metal–support interactions on the structures and catalytic performances of supported metal particles. By using an example of CeOx adlayers supported on Ag nanocrystals, herein a concept of electronic oxide–metal strong interaction (EOMSI) is put forward; this interaction significantly affects the electronic structures of oxide adlayers through metal-to-oxide charge transfer. The EOMSI can stabilize oxide adlayers in a low oxidation state under ambient conditions, which individually are not stable; moreover, the oxide adlayers experiencing the EOMSI are resistant to high-temperature oxidation in air to a certain extent. Such an EOMSI concept helps to generalize the strong influence of oxide–metal interactions on the structures and catalytic performance of oxide/metal inverse catalysts, which have been attracting increasing attention.  相似文献   

4.
孙科举 《催化学报》2016,(10):1608-1618
近年来,纳米金催化剂独特的催化性质,特别是其优异的低温催化氧化活性,引起了人们极大的研究热情.除低温选择氧化外,在精细化学品合成、大气污染物消除、氢能的转换和利用等领域也开发出了一系列有广泛应用前景的金催化反应.此外,体相金的化学惰性和纳米金的超高活性之间差异的“鸿沟”也引起了理论工作者浓厚兴趣,试图从原理上理解体相金和纳米金活性差异的根源. CO催化氧化是最具有代表性的研究金催化活性的化学反应,本文主要综述了近十多年来金催化 CO氧化反应理论计算方面的研究工作.一般认为, CO在纳米金表面的吸附是 CO氧化反应的初始步骤.密度泛函理论研究表明, CO在金表面的吸附强度主要与被吸附金原子的配位数有关:金配位数越低, CO的吸附能越强,部分研究结果表明两者之间存在近似的线性关系.我们研究发现, CO吸附强度也与被吸附金周围配位金原子的相对位置有关,其中位于正下方的配位金原子加强 CO吸附,而位于侧位的配位金原子则弱化 CO吸附,这显然削弱了 CO吸附与金配位数线性关系的可靠性.理论研究表明,在纯金表
  面上 O2吸附强度一般很弱,只有在一些特殊结构的金团簇上才有较强的吸附,但在 Au/TiO2界面及 CeO2表面上 O2吸附较强.金表面原子氧的吸附和金的表面结构有关.我们发现,原子氧倾向于在金的表面形成一种线性的 O–Au–O结构以增加其稳定性.当金表面的氧覆盖度增大时,会形成一种金氧化物薄膜结构,其结构依赖于氧的化学势和金的表面结构.纳米金催化 CO氧化反应机理可能因体系、载体等的差异而不同.大部分理论计算结果表明,在纯金表面上 O2很难直接解离形成原子氧,因此反应机理可能是吸附的 CO先与 O2反应形成了一种 CO–O2中间体,然后解离形成 CO2.在 Au/TiO2和 Au/CeO2催化剂上 CO催化氧化机理争议很大,均有计算结果支持 LH机理和 M–vK机理.另外,根据实验上观察到了负载型纳米金能直接活化分子氧的结果,理论上也提出了分子氧先解离为原子氧再与 CO反应的氧解离机理.针对如何解离分子氧问题,人们分别提出了低配位金模型、正方形金结构模型、Ti5c模型及 Au/Ti5c模型等.我们也提出了一种独特的双直线 O–Au–O模型来理解 Au/TiO2或 Au/CeO2界面解离活化分子氧.理论计算结果表明,低配位的金,金和载体之间的电荷转移,以及金所表现出的强相对论效应对于纳米金的活性影响很大.需要特别指出的是,金的强相对论效应有助于理解金表面的 CO吸附与金配位的关系、金表面原子氧的吸附特性、金氧化物薄膜的结构和分子氧的活化等过程.我们认为,金的强相对论作用导致了体相金的化学惰性以及纳米金的活性,因此相对论效应的深入研究将有助于理解金催化 CO氧化反应机理,从而有助于深层次理解纳米金催化活性来源.  相似文献   

5.
Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light‐off data both indicate low interaction between propene and the CO oxidation active site on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. This catalyst shows great potential as a low‐cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems.  相似文献   

6.
7.
The conversion of photon energy to chemical energy and vice versa requires the close arrangement of absorber/emitters and (electro)chemical reactions sites. This review considers local measurement techniques aiding in the design of efficient oxide systems for the utilization of light as energy source and as efficient detection principle. Artificial photoelectrochemical systems are often build on oxides as they are abundant and have semiconducting properties. However, no single oxide fulfills all requirements for an efficient conversion of sunlight to chemical energy and thus complex oxides are explored. These oxides might be obtained by doping oxides with other metal cations or by combining different oxides for absorbance and catalyzing the desired reaction, mainly water splitting. Due to the enormous amount of possible combinations combinatorial search for new material systems has been pursued and accelerated around the world making use of local photoelectrochemical characterization techniques in the screening step. Local detection schemes based on scanning electrochemical microscopy and scanning electrochemical cell microscopy also provide details about the kinetics for heterogeneous charge transfer and the release of soluble reaction products. During the recent years the scanning probe methods have been complemented by local detection of fluorescent reaction products that are formed by heterogeneous electron transfer reactions from and non-fluorescent precursor molecules. Such detection is possible with single molecule sensitivity and spatial resolution exceeding the diffraction limit (superresolution). Such approaches enabled the discovery of population within ensembles of metal oxide nanoparticles that are distinguished by the location and reactivity of their reaction sites. Optical techniques for measuring Faradaic currents hold great promise for the measurement of very low currents beyond the study of photoelectrochemistry of metal oxides.  相似文献   

8.
We show that Pt nanoparticles synthesized on oxide nanocatalysts exhibit catalytic activity enhancement depending on the type of the oxide support. To synthesize the Pt/oxide nanocatalysts, we employed a versatile synthesis method using Pt nanoparticles (NPs) supported on various metal oxides (i.e., SiO2, CeO2, Al2O3, and FeAl2O4) utilizing ultrasonic spray pyrolysis. Catalytic CO oxidation was carried out on these catalysts, and it was found that the catalytic activity of the Pt NPs varied depending on the supporting oxide. While Pt/CeO2 exhibited the highest metal dispersion and active surface area, Pt/FeAl2O4 exhibited the lowest active surface area. Among the Pt/oxide nanocatalysts, Pt NPs supported on CeO2 showed the highest catalytic activity. We ascribe the enhancement in turnover frequency of the Pt/CeO2 nanocatalysts to strong metal–support interactions due to charge transport between the metal catalysts and the oxide support. Such Pt/oxide nanocatalysts synthesized via spray pyrolysis offer potential possibilities for large-scale synthesis of tailored catalytic systems for technologically relevant applications.  相似文献   

9.
The preparation of sensitizers for dye‐sensitized solar cells (DSSCs) represents an active area of research for both sustainability and renewable energy. Both RuII and OsII metal sensitizers offer unique photophysical and electrochemical properties that arise from the intrinsic electronic properties, that is, the higher propensity to form the lower‐energy metal‐to‐ligand charge‐transfer (MLCT) transition, and their capability to support chelates with multiple carboxy groups, which serve as a bridge to the metal oxide and enable efficient injection of the photoelectron. Here we present an overview of the synthesis and testing of these metal sensitizers that bear functional azolate chelates (both pyrazolate and triazolate), which are capable of modifying the metal sensitizers in a systematic and beneficial manner. Basic principles of the molecular designs, the structural relationship to the photophysical and electrochemical properties, and performances of the as‐fabricated DSSCs are highlighted. The success in the breakthrough of the synthetic protocols and potential applications might provide strong stimulus for the future development of technologies such as DSSCs, organic light‐emitting diodes, solar water splitting, and so forth.  相似文献   

10.
《Journal of Energy Chemistry》2017,26(6):1210-1216
Hollow metal oxide materials with nanometer-to-micrometer dimensions have attracted tremendous attention because of their potential applications in energy conversion and storage systems. Numerous efforts have been focused on developing versatile methods for the rational synthesis of various hollow structures to act as efficient water oxidation catalysts. In this work, a unique porous and hollow CoO tetragonal prism-like structure has been successfully synthesized via a facile and efficient co-precipitation method with polyvinylpyrrolidone(PVP K30) followed by a heating treatment of the resulted precipitates.The as-prepared porous and hollow CoO microprisms displayed a high activity and stability for water oxidation in 1.0 M KOH solution. To reach a current density of 10 m A/cm~2, a low overpotential of 280 m V is required. The remarkable activity can be attributed to the synergistic effect between two different but well-distributed CoO crystalline phases, uniform particle size, ameliorative crystallinity, high surface area and the low mass transfer resistance benefitted from the unique porous structure.  相似文献   

11.
Most implementations of the photoanode for water splitting are based on semiconductors and inorganic catalysts, wherein the surface defect and the grain boundary of inorganic materials have been a major barrier hindering the charge transfer between the light absorber and the catalyst. Here we report a new type of photoanode for water splitting, featuring the combination of α-Fe2O3 and molecular Ru catalysts. Fabricated by self-assembly, the semiconductor/molecule interface is not only efficient for the light-induced charge separation but also highly catalytic toward the water oxidation reaction. This work opens a new avenue for improving the efficiency of the solar-to-fuel conversion.  相似文献   

12.
A new perspective of electron transfer chemistry is described for fine control of electron transfer reactions including back electron transfer in the charge separated state of artificial photosynthetic compounds and its synthetic application. Fundamental electron transfer properties of suitable components of efficient electron transfer systems are described in light of the Marcus theory of electron transfer, in particular focusing on the Marcus inverted region, and they are applied to design multi-step electron transfer systems which can well mimic the function of a photosynthetic reaction center. Both intermolecular and intramolecular electron transfer processes are finely controlled by complexation of radical anions, produced in the electron transfer, with metal ions which act as Lewis acids. Quantitative measures to determine the Lewis acidity of a variety of metal ions are given in relation to the promoting effects of metal ions on the electron transfer reactions. The mechanistic viability of metal ion catalysis in electron transfer reactions is demonstrated by a variety of examples of chemical transformations involving metal ion-promoted electron transfer processes as the rate-determining steps, which are made possible by complexation of radical anions with metal ions.  相似文献   

13.
New water-soluble macromolecular palladium complexes with phase transfer ability were used for two-phase Wacker oxidation of higher alkenes. Macromolecular metal complexes have been prepared employing as ligands monobutyl ether of polyethylene oxide and copolymers of ethylene oxide and propylene oxide functionalized by β,β'-iminodipropionitrile and acetodinitrile. Macromolecular metal complexes exhibited high activity and selectivity as catalysts for Wacker oxidation of different alkenes: octene-1, dodecene-1, hexadecene-1, styrene, propenylbenzene, cyclooctadiene-1,5. The complexes based on β,β'-iminodipropionitrile ligands showed the highest activity. All catalysts can be easily separated from product and used repeatedly without decrease of activity.  相似文献   

14.
不论在自然光合作用系统中,还是在人工能量转换系统如电解水制氢、二氧化碳还原、电化学固氮和金属空气电池中,析氧反应(OER)均是一个非常重要的半反应.OER具有多电子、多质子的特性,反应过程复杂且动力学缓慢.在自然界水氧化过程中,光合系统Ⅱ中的氨基酸残基构筑了专门的质子转移通道和电子转移通道,通过质子耦合电子转移来高效输...  相似文献   

15.
The goal of artificial photosynthesis is to use the energy of the sun to make high-energy chemicals for energy production. One approach, described here, is to use light absorption and excited-state electron transfer to create oxidative and reductive equivalents for driving relevant fuel-forming half-reactions such as the oxidation of water to O2 and its reduction to H2. In this "integrated modular assembly" approach, separate components for light absorption, energy transfer, and long-range electron transfer by use of free-energy gradients are integrated with oxidative and reductive catalysts into single molecular assemblies or on separate electrodes in photelectrochemical cells. Derivatized porphyrins and metalloporphyrins and metal polypyridyl complexes have been most commonly used in these assemblies, with the latter the focus of the current account. The underlying physical principles--light absorption, energy transfer, radiative and nonradiative excited-state decay, electron transfer, proton-coupled electron transfer, and catalysis--are outlined with an eye toward their roles in molecular assemblies for energy conversion. Synthetic approaches based on sequential covalent bond formation, derivatization of preformed polymers, and stepwise polypeptide synthesis have been used to prepare molecular assemblies. A higher level hierarchial "assembly of assemblies" strategy is required for a working device, and progress has been made for metal polypyridyl complex assemblies based on sol-gels, electropolymerized thin films, and chemical adsorption to thin films of metal oxide nanoparticles.  相似文献   

16.
Metal–organic frameworks (MOFs) are crystalline porous materials formed from bi‐ or multipodal organic linkers and transition‐metal nodes. Some MOFs have high structural stability, combined with large flexibility in design and post‐synthetic modification. MOFs can be photoresponsive through light absorption by the organic linker or the metal oxide nodes. Photoexcitation of the light absorbing units in MOFs often generates a ligand‐to‐metal charge‐separation state that can result in photocatalytic activity. In this Review we discuss the advantages and uniqueness that MOFs offer in photocatalysis. We present the best practices to determine photocatalytic activity in MOFs and for the deposition of co‐catalysts. In particular we give examples showing the photocatalytic activity of MOFs in H2 evolution, CO2 reduction, photooxygenation, and photoreduction.  相似文献   

17.
焙烧条件对金催化剂的结构及其催化CO氧化性能的影响   总被引:8,自引:0,他引:8  
邹旭华  段雪等 《分子催化》2001,15(4):246-250
采用共沉淀法和金属有机配合物固载法,分别制备了负载型金催化剂,并考察了焙烧条件对其催化CO氧化性能的影响。实验结果表明,焙烧温度和时间对催化剂的结构和活性的影响显著,不同的金属氧化物负载的金催化剂具有不同的最佳焙烧温度。DTA-TG分析结果确定了催化剂稳定结构的形成温度;XRD测试结果显示,在最佳焙烧条件下得到的催化剂,其载体为具有一定结晶度的金属氧化物。  相似文献   

18.
综述了以O2为清洁氧源甲苯类化合物的气相和液相选择性氧化。甲苯类化合物的气相选择性氧化中主要介绍了金属氧化物、分子筛和负载型催化剂并对影响催化剂活性和选择性的因素进行了分析;甲苯类化合物的液相选择性氧化中重点介绍了MC(mid-century)催化体系及其反应机理方面的研究进展,并特别介绍了仿生催化在甲苯类化合物催化氧化中的应用。对各催化氧化体系的应用前景进行了展望。  相似文献   

19.
Composite materials consisting of nanoscale gold particles and protective polymer shells were designed and tested as catalysts in various chemical reactions. Initially, the systematic incorporation of multiple gold nanoparticles into a poly(N-isopropylacrylamide) particle was achieved by an in situ method under light irradiation. The degree of gold nanoparticle loading, along with the structural and morphological properties, was examined as a function of the amount of initial gold ions and reducing agent. As these gold nanoparticles were physically-embedded within the polymer particle in the absence of strong interfacial interactions between the gold nanoparticles and polymer matrix, the readily-accessible surface of the gold nanoparticles with a highly increased stability allowed for their use as recyclable catalysts in oxidation, reduction, and coupling reactions. Overall, the ability to integrate catalytically-active metal nanoparticles within polymer particles in situ allows for designing novel composite materials for multi-purpose catalytic systems.  相似文献   

20.
The advancement of direct solar-to-fuel conversion technologies requires the development of efficient catalysts as well as efficient materials and novel approaches for light harvesting and charge separation. We report a novel system for unprecedentedly efficient (with near-unity quantum yield) light-driven reduction of methylviologen (MV(2+)), a common redox mediator, using colloidal quasi-type II CdSe/CdS dot-in-rod nanorods as a light absorber and charge separator and mercaptopropionic acid as a sacrificial electron donor. In the presence of Pt nanoparticles, this system can efficiently convert sunlight into H(2), providing a versatile redox mediator-based approach for solar-to-fuel conversion. Compared to related CdSe seed and CdSe/CdS core/shell quantum dots and CdS nanorods, the quantum yields are significantly higher in the CdSe/CdS dot-in-rod structures. Comparison of charge separation, recombination and hole filling rates in these complexes showed that the dot-in-rod structure enables ultrafast electron transfer to methylviologen, fast hole removal by sacrificial electron donor and slow charge recombination, leading to the high quantum yield for MV(2+) photoreduction. Our finding demonstrates that by controlling the composition, size and shape of quantum-confined nanoheterostructures, the electron and hole wave functions can be tailored to produce efficient light harvesting and charge separation materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号