首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellent conductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we reported a novel well-designed hierarchically porous nitrogen-doped carbon(HPNC) via a combination of salt template(ZnCl_2) and hard template(SiO_2) as sulfur host for lithium–sulfur batteries. The low-melting ZnCl_2 is boiled off and leaves behind micropores and small size mesopores during pyrolysis process, while the silica spheres are removed by acid leaching to generate interconnected 3D network of macropores. The HPNC-S electrode exhibits an initial specific capacity of 1355 mAh g~(–1) at 0.1 C(1 C = 1675 m Ah g~(–1)), a high-rate capability of 623 m Ah g~(–1) at 2 C, and a small decay of 0.13% per cycle over 300 cycles at 0.2 C. This excellent rate capability and remarkable long-term cyclability of the HPNC-S electrode are attributed to its hierarchical porous structures for confining the soluble lithium polysulfide as well as the nitrogen doping for high absorbability of lithium polysulfide.  相似文献   

2.
Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffusion of polysulfide intermediate into the electrolyte still hamper their practical applications.And the reported preparation procedures to sulfur based cathode materials are often complex, and hence are rather difficult to produce at large scale. Here, we report a simple mechano-chemical sulfurization methodology in vacuum environment applying ball-milling method combined both the chemical and physical interaction for the one-pot synthesis of edge-sulfurized grapheme nanoplatelets with 3D porous foam structure as cathode materials. The optimal sample of 70%S–Gn Ps-48 h(ball-milled 48 h) obtains 13.2 wt% sulfur that chemically bonded onto the edge of Gn Ps. And the assembled batteries exhibit high initial discharge capacities of 1089 mAh/g at 0.1 C and 950 mAh/g at 0.5 C, and retain a stable discharge capacity of 776 mAh/g after 250 cycles at 0.5 C with a high Coulombic efficiency of over 98%. The excellent performance is mainly attributed to the mechano-chemical interaction between sulfur and grapheme nanoplatelets. This definitely triggers the currently extensive research in lithium–sulfur battery area.  相似文献   

3.
Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion. Herein, we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluation of electrochemical properties. Novel yolkshell structured Co nanoparticles@polymer materials are fabricated from the facile coating polymer strategy on the surface of ZIF-67. After calcination in nitrogen atmosphere, the Co–N–C nanocomposites in which cobalt metal nanoparticles are embedded in the highly porous and graphitic carbon matrix are successfully achieved. The cobalt nanoparticles containing cobalt metal crystallites with an oxidized shell and/or smaller(or amorphous) cobalt-oxide deposits appear on the surface of graphitic carbons. The prepared Co–N–C nanoparticles showed favorable electrocatalytic activity for oxygen reduction reactions,which is attributed to its high graphitic degree, large surface area and the large amount existence of Co–N active sites.  相似文献   

4.
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.  相似文献   

5.
Facile production of high quality activated carbons from biomass materials has greatly triggered much attention presently. In this paper, a series of interconnected porous carbon materials from lotus root shells biomass are prepared via simple pyrolysis and followed by a KOH activation process. The prepared carbons exhibit high specific surface areas of up to 2961 m~2/g and large pore volume~1.47 cm3/g. In addition, the resultant porous carbons served as electrode materials in supercapacitor exhibit high specific capacitance and outstanding recycling stability and high energy density. In particular, their specific capacitance retention was almost 100% after 10500 cycles at a current density of 2 A/g. Remarkabely, the impact of the tailored specific surface areas of various carbon samples on their capacitive performances is systematically investigated.Generally, it was believed that the highly-developed porosity features(including surface areas and pore volume and pore size-distributions), together with the good conductivity of activated carbon species, play a key role in effectively improving the storage energy performances of the porous carbon electrode materials in supercapacitor.  相似文献   

6.
A template-free carbonization-activation route is developed to fabricate sub-nanopore-containing porous carbon by using a novel polypyrrole(PPy) hydrogel as a precursor.This design of PPy hydrogel precursor containing molecular-scale grids(diameter~2.0 nm) allows for homogeneous N,O-codoping into the porous carbon scaffold during the pyrolysis process.A subsequent activation step produces activated porous carbons(APCs) with tailored pore structures,which renders the APCs abundant subnanopores on their surface to increase the specific capacitance as extra capacitance sites.Coupled with large specific surface area and abundant heteroatoms,the optimized APC4/1 displays excellent specific capacitance of 379 F/g for liquid-state supercapacitor and 230 F/g for solid-state supercapacitor.The solid-state supercapacitor shows a high energy density of 22.99 Wh/kg at power density of 420 W/kg,which is higher than most reported porous carbon materials and satisfy the urgent requirements of elementary power source for electric vehicles.Moreover,this method can be easily modified to fabricate sub-nanopore-containing porous carbons with preferred structures and compositions for many applications.  相似文献   

7.
Biomass-derived carbon materials have obtained great attention due to their sustainability,easy availability,low cost and environmentally benign.In this work,bamboo leaves derived nitrogen doped hierarchically porous carbon have been efficiently synthesized via an annealing approach,followed by an etching process in HF solution.Electrochemical measurements demonstrate that the unique porous structure,together with the inherent high nitrogen content,endow the as-derived carbon with excellent lithium/sodium storage performance.The porous carbon annealed at 700℃presents outstanding rate capability and remarkable long-term stability as anodes for both lithium-ion batteries and sodium-ion batteries.The optimized carbon delivers a high discharge capacity of 450 mAh/g after 500 cycles at the current density of 0.2 A/g for LIBs,and a discharge capacity of 180 mAh/g after 300 cycles at the current density of 0.1 A/g for SIBs.  相似文献   

8.
The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear.Pitch-based materials undergoing different thermal treatments are superior sources for synthesizing carbons with different structures.Herein,different types of mesophase pitch(domain,flow-domain and mosaic structure) obtained from controllable thermal condensation are utilized to p...  相似文献   

9.
LAI Shou-Lian 《结构化学》2011,30(4):592-599
The influences of different impregnation temperatures,pre-oxidation,carbonization temperatures and activation conditions on the iodine value and carbon deviations was discussed.SEM,EDS,and BET techniques were used to investigate the microstructures and properties of materials.Results showed that activated carbon functional ceramic exhibited excellent comprehensive properties when porous ceramics adsorbed the coal pitch at 150 ℃ for 0.5 h,oxidized at 420 ℃ for 1.0 h,and carbonizated at 700 ℃ for 1.0 h and then activated by using KOH(20wt%) as agent at 800 ℃ for 1.0 h,as confirmed by the high iodine value(162.6 mg/g) and high specific surface area(83.5 m2/g).  相似文献   

10.
Pore size and distribution in carbon-based materials are regarded to be a key factor to affect the electrochemical capacitive performances of the resultant electrodes.In this study,nitrogen and oxygen codoped porous carbons(NOPCs) are fabricated based on a simple Schiff-base reaction between m-phenylenediamine and terephthalaldehyde.The NOPCs have tunable morphologies,high surface areas,abundant heteroatom doping.More importantly,the carbons show a dominant micropores of 0.5-0.8 nm,comparable to the ionic sizes of LiTFSI(Li^+0.069 nm;TFSI-0.79 nm) water-in-salt electrolyte with a high potential window of 2.2 V.Consequently,the fabricated symmetric supercapacitor gives a high energy output of 30.5 Wh/kg at 1 kW/kg,and high stability after successive 10,000 cycles with ^96.8% retention.This study provides promising potential to develop high-energy supercapacitors.  相似文献   

11.
Synthesis of spherical carbon beads with effective CO_2 capture capability is highly desirable for large scale application of CO2 sorption, but remains challenging. Herein, a facile and efficient strategy to prepare nitrogen-doped hierarchically porous carbon spheres was developed via co-pyrolyzation of poly(vinylidene chloride) and melamine in alginate gel beads. In this approach, melamine not only serves as the nitrogen precursor, but also acts as a template for the macropores structures. The nitrogen contents in the hierarchically porous carbon spheres reach a high level, ranging from 11.8 wt% to 14.7 wt%, as the melamine amount increases. Owing to the enriched nitrogen functionalities and the special hierarchical porous structure, the carbon spheres exhibit an outstanding CO_2 capture performance, with the dynamic capacity of as much as about 7 wt% and a separation factor about 49 at 25 °C in a gas mixture of CO_2/N_2(0.5:99.5, v/v).  相似文献   

12.
Developing porous carbon materials with low-cost, sustainable and eco-friendly natural resources is emerging as an ever important research field in the application of high-performance supercapacitor. In this paper, a simple synthetic method to fabricate nitrogen doped porous carbon(NPC) is developed via a one-pot carbonization of sodium alginate and urea. The as-prepared NPC annealed at 700℃ with mesoand macro-porous structure exhibits excellent specific capacitance(180.2 F/g at 1 A/g) and superior cycling life when serves as electrode materials for supercapacitor. Moreover, the investigation on the annealing temperature demonstrates that NPC pyrolysis at 700℃ possesses relatively high pyrrole nitrogen and pyridine nitrogen, which is favorable for enhancing supercapacitor performance. This work extends biomass derived carbon materials in energy storage applications.  相似文献   

13.
Hard carbon draws great interests as anode material in lithium ion batteries(LIBs)due to its high theoretical capacity,high rate capability and abundance of its precursors.Herein we firstly synthesize the lignin-melamine resins by grafting melamine onto lignin.Afterwards,nitrogen doped hard carbon is prepared by the pyrolysis of lignin-melamine resins with the aid of catalyst(Ni(NO_3)_2·6H_2O)at 1000°C.Compared with the samples without nitrogen-doping and catalysis,as-prepared nitrogen doped hard carbon exhibits higher reversible capacity(345 mAh g~(–1)at 0.1 A g~(-1)),higher rate capability(145 mAh g~(-1)at 5 A g~(–1))and excellent cycling stability.The superior electrochemical performance is ascribed to the synergistic effect of nitrogen doping,graphitic structure and amorphous structure.Among them,nitrogen doping could create the vacancies around the nitrogen sites,which enhance the reactivity and the electronic conductivity of materials.Additionally,graphitic structure also enhances the electronic conductivity of materials,thus improving the electrochemical performance of hard carbon.It is worthwhile that lignin,renewable and abundant biopolymer,is converted to hard carbon with good electrochemical performance,which realizes the high value utilization of lignin.  相似文献   

14.
Porous nanocarbons with average particle size 20–40 nm were developed using biowaste oil palm leaves as a precursor.Simple pyrolysis was carried out at 700 °C under nitrogen atmosphere.Obtained porous nanocarbons showed excellent porous nature along with spherical shape.Symmetric supercapacitor fabricated from porous nanocarbons showed superior supercapacitance performance where high specific capacitance of 368 F/g at 0.06 A/g in 5 M KOH were reported.It also exhibited high stability(96% over 1700cycles) and energy density of 13 Wh/kg.Low resistance values were obtained by fitting the impedance spectra,thus indicating the availability of these materials as supercapacitors electrode.The presented method is cost effective and also in line with waste to wealth approach.  相似文献   

15.
A series of spherical activated carbons(SACs)with different pore structures were prepared from chloromethylated polydivinylbenzene by ZnCl_2 activation.The effects of activation temperature and retention time on the yield and textural properties of the resulting SACs were studied.All the SACs are generated with high yield of above 65% and exhibit relatively high mesopore fraction(me%)of 35.7%-43.6% compared with conventional activated carbons.The sample zlc28 prepared at 800℃for 2 h has the largest BET s...  相似文献   

16.
An easy and delicate approach using cheap carbon source as conductive materials to construct 3D sequential porous structural Na3V2(PO4)3/C(NVP/C)with high performance for cathode materials of sodium ion battery is highly desired.In this paper,the NVP/C with 3D sequential porous structure is constructed by a delicate approach named as“cooking porridge”including evaporation and calcination stages.Especially,during evaporation,the viscosity of NVP/C precursor is optimized by controlling the adding quantity of citric acid,thus leading to a 3D sequential porous structure with a high specific surface area.Furthermore,the NVP/C with a 3D sequential porous structure enables the electrolyte to interior easily,providing more active sites for redox reaction and shortening the diffusion path of electron and sodium ion.Therefore,benefited from its unique structure,as cathode material of sodium ion batteries,the 3D sequential porous structural NVP/C exhibits high specific capacities(115.7,88.9 and 74.4 mA·h/g at current rates of 1,20 and 50 C,respectively)and excellent cycling stability(107.5 and 80.4 mA·h/g are remained at a current density of 1 C after 500 cycles and at a current density of 20 C after 2200 cycles,respectively).  相似文献   

17.
One-dimensional nano-structured materials have attracted attention due to its unique properties afforded such as the across-linked structures and large aspect ratios.In this work,one-dimensional CoSe@N-doped carbon nanofibers(CoSe@NCNFs)are successfully by combining the techniques of electrospinning and annealing.Selenium powder are directly dispersed in the polyacrylonitrile/N,N-Dimethylformamide(DMF)solution containing cobalt salt to form the product.The performance of these materials was investigated in Li-ion batteries after the annealing at different temperatures.The Co Se@NC nanofibers annealed at 550℃(CoSe@NC-550)and displayed excellent storage properties,affording a high capacity of 796 m Ah·g~(-1)at a current density of 1 A·g~(-1)for 100 cycles.Moreover,it is confirmed that the pseudocapacitive contribution of CoSe@NC-550 is up to 72.8%at the scan rate of 1 mV/s through the cyclic voltammetry analysis.  相似文献   

18.
To effectively solve the agglomeration problems in the solid state reaction process,pre-adding glucose is adopted to the synthesis of Li Fe PO4/C energy materials using Fe–P waste slag. The average particle grain size of Li FeP O4/C decreases,and the impurities in Li Fe PO4/C composites reduce to a great extent. It makes great sense to the mass industrial production. The optimum synthesis conditions determined in this work are based on the orthogonal experiments. The samples synthesized in a scale of 500 g exhibit high purity,excellent electrochemical performance,high reaction activity,good reversibility,and low polarization level.The discharge capacities are 145,134,117,and 102 m Ah/g at the current densities of 0.1 C,0.2 C,0.5 C and1 C,respectively. This work puts forward a practical suggestion for mass producing environmental benign and low cost Li FeP O4/C as cathode materials of lithium ion batteries.  相似文献   

19.
Rechargeable lithium-oxygen(Li–O_2) batteries have been considered as the most promising candidates for energy storage and conversion devices because of their ultra high energy density. Until now, the critical scientific challenges facing Li–O_2batteries are the absence of advanced electrode architectures and highly efficient electrocatalysts for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER), which seriously hinder the commercialization of this technology. In the last few years, a number of strategies have been devoted to exploring new catalysts with novel structures to enhance the battery performance. Among various of oxygen electrode catalysts, carbon-based materials have triggered tremendous attention as suitable cathode catalysts for Li–O_2batteries due to the reasonable structures and the balance of catalytic activity, durability and cost. In this review, we summarize the recent advances and basic understandings related to the carbon-based oxygen electrode catalytic materials, including nanostructured carbon materials(one-dimensional(1D) carbon nanotubes and carbon nanofibers, 2D graphene nanosheets, 3D hierarchical architectures and their doped structures), and metal/metal oxide-nanocarbon hybrid materials(nanocarbon supporting metal/metal oxide and nanocarbon encapsulating metal/metal oxide). Finally, several key points and research directions of the future design for highly efficient catalysts for practical Li–O_2batteries are proposed based on the fundamental understandings and achievements of this battery field.  相似文献   

20.
Porous carbon materials with developed porosity,high surface area and good thermal-and chemicalresistance are advantageous for gas adsorption and separation.However,most carbon adsorbents are in powder form which exhibit high pressure drop when deployed in practical separation bed.While monolithic carbons have largely addressed the pulverization problem and preserved kinetics and usually suffer from abrasion during multiple adsorption-desorption cycles.Herein,we proposed the designed synthesis of mechanically robust carbon monoliths with hierarchical pores,solid nitrogen-containing framework.The synthesis started with the polymerization of resorcinol and formaldehyde under weakly acidic conditions generated from cyanuric acid,and then an appropriate amount of hexamethylenetetramine(HMTA)was added as a crosslinker to prompt the formation of three dimensional frameworks.After carbonization process,the as-obtained porous carbon monoliths have a high radial compressive strength of 886 N/cm as well as a BET specific surface area of up to 683 m~2/g.At approximately 1 bar,the CO_2 equilibrium capacities of the monoliths are in the range of 3.1–4.0 mmol/g at 273 K and of 2.3–3.0 mmol/g at 298 K,exhibiting high selectivity for the capture of CO_2 over N_2 from a stream which consists of 16.7%(v%)CO_2 in N_2.Meanwhile,they undergo a facile CO_2 release in an argon stream at 298 K,indicating a good regeneration capacity.After cycle testing,sieving and regeneration,the adsorbent has no mass loss,compared to that of its fresh counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号