首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正Nanoparticles, clusters and single-atoms constitute the major types of metal catalysts. The size variation of metal species,known as size effect in heterogeneous catalysts, not only changed the geometric and electronic structure of metal atoms, but also altered their anchoring strength with the immobilizing supports, showing distinctively varied activities. A gradual accumulation of large amounts of experimental data and theoretical calculations has unambitiously verified that the size of the metal species played a crucial role in determining the catalytic performance with respect to the geometric and electronic structures of active sites.  相似文献   

2.
Environmental pollution and energy storage are two major challenges faced by human beings. The magnitude of them is ever-increasing due to rapid pace of urbanization and industrialization. In view of this, to achieve green environment and provide clean energy for human beings are pivotal for sustainability. The catalysis technology plays dominant role in addressing these issues. The nano/microstructured catalyst with intriguing physical and chemical properties could offer numerous opportunities to realize environmental sustainability and clean energy production. In the past two decades, great advances have been made on the design, synthesis and mechanistic understanding of typical catalysts for environmental and energetic applications. These new catalysts in various fashions can be classified into three main types, thermal catalysis, photocatalysis and electro catalysis. In some cases, two types can be combined together, such as photoelectrocatalysis and photothermal catalysis, to achieve higher catalysis efficiency. The features of catalysts can be further tailored to allow for enhanced catalytic performance in pollutant degradation and energy conversion. Advanced in situ techniques have been applied to explore and reveal the catalytic mechanisms.  相似文献   

3.
4.
Carbon is one of the few elements known since ancient time. It exists as diamond and graphite in nature. Since syntheticcarbon became available almost a century ago, it has  相似文献   

5.
<正>Energy utilization includes two aspects of storage and conversion.Both the density of energy storage and the efficiency of energy conversion are particularly considered in the application of energy.It is well known that chemical energy can be easily stored in chemical substances with high-energy density such as those containing hydrogen and lithium.Meanwhile,  相似文献   

6.
正Energy utilization includes two aspects of storage and conversion.Both the density of energy storage and the efficiency of energy conversion are particularly considered in the application of energy.It is well known that chemical energy can be easily stored in chemical substances with high-energy density such as those containing hydrogen and lithium.Meanwhile,  相似文献   

7.
正The demand for a sustainable development of our society requires a fundamental turn in the current approach to energy production and use,which requires developing new concepts and technologies for catalysis in energy chemistry and environmental protection.Realize this challenge requires new materials,new technologies and new processes that can bring about a revolutionary change in our daily life.The title of this special  相似文献   

8.
不对称催化:科学与机遇   总被引:5,自引:0,他引:5  
野依良治 《化学通报》2002,65(6):363-372
20 0 1年 1 2月 2 5日 ,日本名古屋大学教授、2 0 0 1年诺贝尔化学奖得主野依良治 (NoyoriRyoji)博士应邀来沪接受中国科学院上海有机化学研究所名誉教授证书 ,并在上海科学会堂作了题为“不对称催化 :科学与机遇”的报告。征得报告人的同意 ,由林国强院士、陈耀全教授将报告录音整理翻译 ,并将其主要内容在本刊发表 ,以飨读者。大家知道 ,当分子中存在不对称中心时 ,分子就存在对映异构体 ,这种现象称为“分子手性”。当把具有对映异构体的化合物用作药物时 ,它们可能表现出极不相同的生物或生理现象。二十世纪 60年代 ,有一种…  相似文献   

9.
房东旭  刘智焬  江治 《分子催化》2022,36(5):456-466
微波是一种能量传递方式。与传统电加热相比,微波加热具有加热速度快、热惯性小、选择性加热等特点,因而被视为一种优质的能量来源。微波催化是一种使用微波对反应系统供能,从而推动催化反应进行的化学过程。近年来,许多研究者致力于探索和发展微波催化技术,包括利用微波技术提升化学反应速率、开发具有出色微波吸收能力的催化剂、建立节能环保的微波催化系统等。本文首先介绍了微波的相关理论,讲述了材料对微波的吸收原理;然后从微波催化降解挥发性有机物(Volatile Organic Compounds, VOCs)、微波催化污水处理、微波催化生物质热解和微波催化碳氢化合物转化等方面综述了微波催化在能源环境中的应用;最后对微波催化过程的机理展开了讨论。  相似文献   

10.
11.
12.
可再生能源供应方案包括析氢反应(HER)、析氧反应(OER)、氧还原反应(ORR)和二氧化碳还原反应(CO2RR)等多种反应,电催化剂对这些反应至关重要。到目前为止,已有一系列导电MOFs作为与能源相关电催化电极材料的报道。本文从提高MOFs导电能力和对产物的选择性、增强MOFs的化学稳定性及增加MOFs的反应活性位点等方面介绍了导电MOFs作为电催化剂的设计策略,重点综述了其在能源转化涉及的HER、OER、ORR以及CO2RR方面的应用,并从材料制备和应用需求角度出发, 对高性能导电MOFs材料在电催化领域所面临的挑战和前景进行了展望。  相似文献   

13.
共价有机框架(Covalent Organic Frameworks,COFs)是一类由有机结构单元通过共价键连接形成的多孔框架晶体材料,具有密度低、比表面积大和热稳定性高等特点,在分子吸附与分离、传感、催化、光电器件等领域存在着广阔的应用前景.近年来,基于其固有结构特点,二维COFs在能源领域中的应用潜力也逐渐引起了科学界的关注.本文主要综述了二维COFs材料在能源存储(锂离子电池、锂硫电池、超级电容器、燃料电池)和能源转化(水分解反应以及CO2还原反应)等方面的研究进展,并对其研究前景进行了展望.  相似文献   

14.
15.
16.
Over the past decade, to meet the ever increased demand on high-performance catalysts with excellent activity, selectivity and stability, the nanocatalysts and catalysis have been rigorously explored, resulting in a noticeable progress in new paradigm of nanoscience and nanotechnology for catalysis. Differing remarkably from conventional bulk catalysts, size shrinkage of active components to nanometer scale gives a rise to significantly increased catalytic activity, owing to the high surface-to-volume ratio of small particles as well as a large fraction of active atoms with dangling bonds exposed surfaces. In addition, other unique properties of nanomaterials such as surface- and strain-driven lattice distortion, variation in electronic state density and oxidation-induced charge redistribution could also benefit the catalytic performance.  相似文献   

17.
18.
19.
谢微  陈军 《化学教育》2021,42(18):53-57
大力发展新能源、实现能源清洁利用将成为解决能源问题、兑现“碳中和”承诺的根本出路。当前,真正毕业进入新能源产业工作的专业人才普遍匮乏,总量不足,人才培养规模尚不能支撑“中国制造、中国创造”的需求。南开大学主动布局国家战略需求,启动新能源科学与工程“新工科”特色班,通过整合化学和电光两大学科师资力量、优化专业课程设置、完善实践实训体系,推动应用理科向工科延伸,实化南开新工科体系建设。特色班实行导师制、小班化、个性化、国际化培养模式,培养面向国家急需的新能源产业方向,在清洁能源领域科学研究、技术开发、工程应用等方面具有扎实的理论基础和较强实践与创新能力的专门人才。  相似文献   

20.
相较于目前主流的锂离子电池,钠离子电池成本相对较低,因而有望在未来大规模储能系统中获得重要应用,然而其实用化进程仍受制于缺少合适的正负极材料,特别是性能优异且实用化的负极材料.钠离子电池与锂离子电池具有相似的工作原理,但钠离子和锂离子在碳负极材料中的储存行为却有着很大的不同.总体而言,碳材料仍是目前最有望促进钠离子电池实用化的关键负极材料.本文系统总结并分析了目前已有碳材料中钠离子的储存机制,对负极材料的设计思路和研究进展进行了概述,着重阐述了商用化碳分子筛在钠离子电池中的实用化前景.最后,本文对钠离子电池中碳负极材料的未来发展方向进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号