首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
2.
Sulfonated polyaryletherketones (SPAEK) bearing four sulfonic acid groups on the phenyl side groups were synthesized. The benzophenone moiety of polymer backbone was further reduced to benzydrol group with sodium borohydride. The membranes were crosslinked by acid-catalyzed Friedel-Crafts reaction without sacrifice of sulfonic acid groups and ion exchange capacity (IEC) values. Crosslinked membranes with the same IEC value but different water uptake could be prepared. The optimal crosslinking condition was investigated to achieve lower water uptake, better chemical stability (Fenton's test), and higher proton conductivity. In addition, the hydrophilic ionic channels from originally course and disordered could be modified to be narrow and continuous by this crosslinking method. The crosslinked membranes, CS4PH-40-PEKOH (IEC = 2.4 meq./g), reduced water uptake from 200 to 88% and the weight loss was reduced from 11 to 5% during the Fenton test compared to uncrosslinked one (S4PH-40-PEK). The membrane showed comparable proton conductivity (0.01–0.19 S/cm) to Nafion 212 at 80°C from low to high relative humidity (RH). Single H2/O2 fuel cell based on the crosslinked SPAEK with catalyst loading of 0.25 mg/cm2 (Pd/C) exhibited a peak power density of 220.3 mW/cm2, which was close to that of Nafion 212 (214.0 mW/cm2) at 80°C under 53% RH. These membranes provide a good option as proton exchange membrane with high ion exchange capacity for fuel cells.  相似文献   

3.
Platinum nanoparticles (Pt NPs) on carbon black (CB) have been used as catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells for a while. However, this catalyst has suffered from aggregation and dissolution of Pt NPs as well as CB dissolution. In this study, we resolve those issues by developing perfluorosulfonic acid (PFSA)-functionalized Pt/graphene as a high-performance ORR catalyst. The noncovalently bonded PFSA remarkably decreases the dissolution and aggregation of Pt NPs. Moreover, unlike typical NP functionalization with other capping agents, PFSA is a proton conductor and thus efficiently develops a triple-phase boundary. These advantageous features are reflected in the improved cell performance in electrochemical active surface area, catalytic activity, and long-term durability, compared to those of the commercial Pt/C catalysts and graphene-based catalysts with no such treatment.  相似文献   

4.
Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells(PEMFCs). Electrochemical results and single cell tests show that an enhanced activity for the oxygen reduction reaction(ORR) is obtained for the Pt/WO3/C catalyst compared with Pt/C. The higher catalytic activity might be ascribed to the improved Pt dispersion with smaller particle sizes. The Pt/WO3/C catalyst also exhibits a good electrochemical stability under potential cycling. Thus, the Pt/WO3/C catalyst can be used as a potential PEMFC cathode catalyst.  相似文献   

5.
An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter)×10 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).  相似文献   

6.
An extensive study has been conducted on the proton exchange membrane fuel cells(PEMFCs) with reducing Pt loading.This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes.In this paper,a novel process of the catalyst layers was introduced and investigated.A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode(GCE) to form a thin carbon layer.Then Pt particles were deposited on the surface by reducing hexachloroplatinic(Ⅳ) acid hexahydrate with methanoic acid.SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method.The Pt nanowires grown are in the size of 3 nm(diameter) x 10 nm(length) by high solution TEM image.The novel catalyst layer was characterized by cyclic voltammetry(CV) and scanning electron microscope(SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering.The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants(oxygen or hydrogen).  相似文献   

7.
The synthesis and properties of the first examples of dendritic multiblock co PES s, bearing sulfonated dendritic clusters, that form strong membranes are described. End‐capped dendritic multiblock co PES s with various average block lengths (n = 50–80) were synthesized by two‐step reactions. The synthesis of dendritic blocks consisting of difunctional dendritic block and monofunctional dendritic end‐group was accomplished by an aromatic nucleophilic substitution reaction of hexakis(4‐(4‐fluorophenylsulfonyl)phenyl)benzene with varying amounts of 1‐(4‐hydroxyphenyl)‐2,3,4,5,6‐pentaphenylbenzene, which provides a number of pendant phenyl rings as postsulfonation sites. Polycondensation of a controlled molar ratio between 4,4′‐dihydroxybenzophenone and bis(4‐fluorophenyl)sulfone monomers was carried out in the presence of the difunctional and monofunctional dendritic blocks in sulfolane at 215 °C for 3.5 h. Essentially six sulfonic acid groups were introduced into each hexaphenylbenzene moiety on the dendritic blocks by reaction with a large excess of chlorosulfonic acid, followed by hydrolysis with KOH aqueous solution. The introduction of longer average blocks (n = 60–80) into the dendritic PES s improved the mechanical properties of the resulting sulfonated dendritic PES membranes. At a level of IEC (0.92–1.26 meq/g) similar to Nafion (0.91 meq/g), PES membranes showed proton conductivities (58–67 mS/cm) comparable with that of Nafion (99 mS/cm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5461–5473, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号