共查询到20条相似文献,搜索用时 15 毫秒
1.
Tang Mi Shen Juan Zeng Ting Luo Lan Wu Linghong Chen Mingyao Fu Shaohua Pu Lei 《Journal of Solid State Electrochemistry》2023,27(9):2533-2543
Journal of Solid State Electrochemistry - The reasonable design of electrode materials with high electrochemical activity and stable structure after long cycles can effectively improve the... 相似文献
2.
Wang Weibo Li Zhenjiang Meng Alan Li Qingdang 《Journal of Solid State Electrochemistry》2019,23(2):635-644
Journal of Solid State Electrochemistry - To achieve high-performance supercapacitors, electrode materials with the accessible electrode area, electrons, and ions diffusion channels are strongly... 相似文献
3.
The homogeneous polyaniline–graphene oxide (PANI-GO) nanocomposites were facilely assembled with a redox system in which cumene hydroperoxide (CHP) and iron dichloride (FeCl2) acted as oxidant and reductant, respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that PANI scales coated uniformly on the surface of GO sheets owing to the synergistic effect between the PANI and GO. The obtained PANI-GO nanocomposites exhibited improved electrochemical performance as an electrode material for supercapacitors compared with the pure PANI. The specific capacitance of the PANI-GO nanocomposites was high up to 308.3 F g?1, much higher than that of the pure PANI with specific capacitance of 150 F g?1 at a current density of 1 A g?1 in 2 M H2SO4 electrolyte. The Raman and XPS results illustrated that enhanced electrochemical performance might be attributed to the π-π conjugation between the PANI and GO sheets. 相似文献
4.
Reduced graphene nanosheets/Fe2O3 nanorods (GNS/Fe2O3) composite has been fabricated by a hydrothermal route for supercapacitor electrode materials. The obtained GNS/Fe2O3 composite formed a uniform structure with the Fe2O3 nanorods grew on the graphene surface and/or filled between the graphene sheets. The electrochemical performances of the GNS/Fe2O3 hybrid supercapacitor were tested by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests in 6 M KOH electrolyte. Comparing with the pure Fe2O3 electrode, GNS/Fe2O3 composite electrode exhibits an enhanced specific capacitance of 320 F g−1 at 10 mA cm−2 and an excellent cycle-ability with capacity retention of about 97% after 500 cycles. The simple and cost-effective preparation technique of this composite with good capacitive behavior encourages its potential commercial application. 相似文献
5.
Palani N. S. Kavitha N. S. Venkatesh K. S. Ashok Kumar K. Thirumal V. Pandurangan A. Sekar C. Ilangovan R. 《Journal of Solid State Electrochemistry》2018,22(10):3273-3287
Journal of Solid State Electrochemistry - Graphene sheet/multiwall carbon nanotube (GMC) and its composites with NiO and Ni(OH)2 are synthesized by microwave-assisted technique for the application... 相似文献
6.
《Journal of Energy Chemistry》2014,(3)
CuFe_2O_4 network,prepared via the electrostatic spray deposition technique,with high reversible capacity and long cycle lifetime for lithium ion battery anode material has been reported.The reversible capacity can be further enhanced by coating high electronic conductive polypyrrole(PPy).At the current density of 100mA·g~(-1).Li/CuFe_2O_4 electrode delivers a reversible capacity of 842.9 mAh·g~(-1) while the reversible capacity of Li/PPy-coated CuFe_2O_4 electrode increases up to 1106.7 mAh-g~'.A high capacity of 640.7 mAhg1 for the Li/PPy-coated CuFe_2O_4electrode is maintained in contrast of 398.9 mAh·g~(-1) for CuFe_2O_4 electrode after 60 cycles,which demonstrates good electrochemical performance of the composite due to the increase of electronic conductivity.The electrochemical impedance spectroscopy(EIS) further reveals that the Li/PPy-coated CuFe_2O_4 electrode has a lower charge transfer resistance than the Li/CuFe2C4 electrode. 相似文献
7.
8.
Krishna B. N. Vamsi Bhagwan Jai Hussain Sk. Khaja Yu Jae Su 《Journal of Solid State Electrochemistry》2020,24(4):1033-1044
Journal of Solid State Electrochemistry - Hierarchical nanostructure materials have attracted significant attention due to their fascinating structural features for the application of... 相似文献
9.
Three-dimensional porous nitrogen-doped graphene aerogels (NGAs) were synthesized by using graphene oxide (GO) and chitosan via a self-assembly process by a rapid method. The morphology and structure of the as-prepared aerogels were characterized. The results showed that NGAs possesed the hierarchical pores with the wide size distribution ranging from mesopores to macropores. The NGAs carbonized at different temperature all showed excellent electrochemical performance in 6 mol/L KOH electrolyte and the electrochemical performance of the NGA-900 was the best. When working as a supercapacitor electrode, NGA-900 exhibited a high specific capacitance (244.4 F/g at a current density of 0.2 A/g), superior rate capability (51.0% capacity retention) and excellent cycling life (96.2% capacitance retained after 5000 cycles). 相似文献
10.
《Solid State Sciences》2012,14(6):677-681
The polyaniline/TiO2/graphene oxide (PANI/TiO2/GO) composite, as a novel supercapacitor material, is synthesized by in situ hydrolyzation of tetrabutyl titanate and polymerization of aniline monomer in the presence of graphene oxide. The morphology, composition and structure of the composites as-obtained are characterized by SEM, TEM, XRD and TGA. The electrochemical property and impedance of the composites are studied by cyclic voltammetry and Nyquist plot, respectively. The results show that the introduction of the GO and TiO2 enhanced the electrode conductivity and stability, and then improved the supercapacitive behavior of PANI/TiO2/GO composite. Significantly, the electrochemical measurement results show that the PANI/TiO2/GO composite has a high specific capacitance (1020 F g−1 at 2 mV s−1, 430 F g−1 at 1 A g−1) and long cycle life (over 1000 times). 相似文献
11.
Sub-micron-scaled sodium cobalt oxide (NaCo2O4) powders are prepared by a solid-state reaction method. Characterization using X-ray diffraction indicates that the synthesized NaCo2O4 has a hexagonal layered structure. The electrochemical performance of the NaCo2O4 electrodes is investigated using cyclic voltarnmetry and galvanostatic charge/discharge in NaOH solution. The results show that the specific capacitance of the NaCo2O4 electrode reaches 337 F/g over the potential range of 0.15-0.65 V at a mass normalized current of 50 mA/g. Moreover, NaCo2O4 exhibits very good stability and cycling performance as a supercapacitor material. 相似文献
12.
13.
《Electrochemistry communications》2008,10(1):165-169
ZrO2 nanolayer coated LiFePO4 particles were successfully prepared by a chemical precipitation method. Nanolayer structured ZrO2 was found on the surface of LiFePO4 particles by high resolution transmission electron microscopy (HRTEM). The coating does not affect the crystal structure of the LiFePO4 core, as determined by X-ray diffraction (XRD) and selected area electron diffraction (SAED) on individual particles. The ZrO2 coating can remarkably improve the electrochemical performance at high charge/discharge rate. This improvement may be due to the amelioration of the electrochemical dynamics on the LiFePO4 electrode/electrolyte interface resulting from the effects of the ZrO2 nanolayer coating. 相似文献
14.
15.
Spinel-based nanostructured materials are commonly used as promising electrode materials for supercapacitor applications. The combination of heteroatom-doped carbon material with spinel oxides substantially improves the specific capacitance and cyclic stability. In this work, dopamine-derived nitrogen-doped carbon was coated on spinel phase MnCo2O4 nanospheres using simple solvothermal and calcination methods. Surface morphology and the crystalline structure of the prepared MnCo2O4@Nitrogen-doped carbon were confirmed by FESEM and X-ray diffraction. The electrochemical performance of MnCo2O4@Nitrogen-doped carbon electrode material was analyzed by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. MnCo2O4@nitrogen-doped carbon exhibits the highest specific capacitance of 1200 F/g compared to MnCo2O4 spheres are 726 F/g at 1 A/g and exhibits excellent cyclic stability (capacitance retention of 87% at 7 A/g after 3000 cycles). The enhanced performance of the composite might be benefitted from the synergistic effect between nitrogen-doped carbon on porous MnCo2O4 spheres. Furthermore, an asymmetric supercapacitor device was fabricated by using the optimized composition of MnCo2O4@NC-2 as a positive electrode and nitrogen, sulfur-doped reduced graphene oxide (NS-rGO) as a negative electrode, respectively. This asymmetric supercapacitor device achieves a maximum energy density of 61.0 Wh/kg at a power density of 2889 W/kg and possesses excellent capacitance retention of 95% after 5000 cycles at 7 A/g. 相似文献
16.
Sun Peng Liang Ji-Cai Chen Guang-Yi Zhou Kai-Yuan Li Yu-Hui Liu Jia-Ang Zhang Wen-Zhuo Niu Fu Zhang Wan-Xi 《Research on Chemical Intermediates》2017,43(3):1969-1978
Research on Chemical Intermediates - Freestanding bundle-like Co0.85Se nanotube arrays on nickle foam were prepared through a facile ion-exchange reaction and directly used as electrodes for... 相似文献
17.
18.
S.-B. Kim K. J. Lee W. J. Choi W.-S. Kim I. C. Jang H. H. Lim Y. S. Lee 《Journal of Solid State Electrochemistry》2010,14(6):919-922
Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4 was synthesized by a co-precipitation method. It consisted of the parent Li[Ni0.5Co0.2Mn0.3]O2 as the core and the LiFePO4 as the coating material, with an average particle diameter of 500 nm. The LiFePO4-coated Li[Ni0.5Co0.2Mn0.3]O2 showed no large initial capacity drop in the first cycle, which generally occurred with cathode materials bearing inactive
coating layers such as Al2O3, ZnO, and MgO. Furthermore, it presented a remarkably improved cycle retention rate of over 89% until 400 cycles at 50 °C.
We suggest that the LiFePO4 coating technique is a very effective tool to improve the cycle performance of Li[Ni0.5Co0.2Mn0.3]O2 at high temperatures. 相似文献
19.
Reasonably designing the structure of composite materials and effectively increasing electroactive sites of electrode materials are considered as the promising approaches to enhance the electrochemical performance for supercapacitors. Herein, a double-layer layered double hydroxide nanosheet array grown on Ni foams is constructed through a facile two-step hydrothermal method. The as-prepared double-layer electrode materials including Ni, Co, and Mn elements possess large surface area and porosity; thus, it can increase the contact between electrolytes and the electrode materials, which leads to an increase in electroactive sites and high electrochemical performance. The double-layer electrode shows a high capacitance performance (2950 F/g at 1 A/g) and superior cycling stability (79% retention after 10,000 cycles at 10 A/g). In addition, the asymmetric NiCo/NiMn-LDHs//AC device is fabricated and manifests good capacity with excellent cyclic stability of 82.2% after 10,000 cycles. 相似文献
20.
Transitional metal selenides have high conductivity, even metal quality, which makes them great for using as electrode materials for fabricating supercapacitors. Here, hierarchical Ni3Se2 nanosheet-on-nanorods on Ni foam(NSR-Ni3Se2/Ni) was fabricated by a facile three-dimensional(3D) substrate-assisted confinement assembly method, and used as a freestanding electrode material for hybrid supercapacitors(HSCs). In this design, metallic Ni3Se 相似文献