首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Adsorption state of catalyst on photoanode is an important factor on influencing the performance of dye-sensitized photoelectrochemical cells(DS-PECs) for water splitting. Photoanode TiO_2(1 + 2) was assembled with Ru(bpy)3phosphoric acid derivative(complex 1) as photosensitizer and complex 2 as water oxidation catalyst to compare with photoanode TiO_2(1 + 3). The photocurrent density of photoanode TiO 2(1 + 3) with catalyst 3 synthesized with only one end fixing on the surface of TiO_2 is about four-fold of the photoanode assembled with catalyst 2 fixing with two claws on the surface of TiO 2. The phenomenon should be caused by the littery arrangement and shorter distance of catalyst 2 from the active center of catalyst to TiO_2 on the surface of semiconductor which led to lowly efficient electron transfer.  相似文献   

2.
TiSiW_(12)O_(40)/TiO_2催化合成磷酸三甲苯酯的研究   总被引:8,自引:1,他引:8  
杨锦飞 《有机化学》2003,23(11):1317-1319
应用TiSiW_(12)O_(40)/TiO_2催化剂合成磷酸三甲苯酯研究结果表明,该催化 剂具有较高的催化活性。考察了催化剂用量、反应温度和反应时间对酯产率的影响 。在典型反应条件(催化剂用量为原料总量的1.0%,反应温度为100-120 ℃,反应 时间为8h)下所得磷酸三甲苯酯的产率为85.5%。该催化剂易于回收且可重复使用 ,具有良好的活性稳定性。  相似文献   

3.
Photoelectrochemical(PEC) water splitting is a promising approach for renewable hydrogen production.However,the practical PEC solar-to-fuel conversion efficiency is still low owing to poor light absorption and rapid recombination of charge carriers in photoelectrode.In this work,we report a ternary photoanode with simultaneously enhancement of light absorption and water oxidation efficiency by introducing copper phthalocyanine(CuPc) and nickel iron-laye red double hydroxide(NiFe-LDH) on TiO_2(denoted as TiO_2/CuPc/NiFe-LDH).An experimental study reveals that CuPc loading on TiO_2 bring strong visible light absorption;NiFe-LDH as an oxygen evolution reaction catalyst efficiently accelerates the surface water oxidation reaction.This synergistic effect of CuPc and NiFe-LDH gives enhanced photocurrent density(2.10 mA/cm2 at 0.6 V vs.SCE) and excellent stability in the ternary TiO_2/CuPc/NiFeLDH photoanode.  相似文献   

4.
Facile deposition of a water-splitting catalyst on low-cost electrode materials could be attractive for hydrogen production from water and solar energy conversion. Herein we describe fast electrodeposition of cobalt-based water oxidation catalyst(Co-WOC) on simple graphite electrode for water splitting. The deposition process is quite fast, which reaches a plateau in less than 75 min and the final current density is~1.8 mA/cm2under the applied potential of 1.31 V at pH = 7.0. The scanning electron microscopy(SEM) study shows the formation of nanometer-sized particles(10-100 nm) on the surface of the electrode after only 2 min and micrometer-sized particles(2-5 μm) after 90 min of electrolysis. X-ray photoelectron spectroscopy(XPS) data demonstrate the as-synthesized ex-situ catalyst mainly contains Co2+and Co3+species incorporating a substantial amount of phosphate anions. These experiments suggest that cost-efficient cobalt oxide materials on graphite exhibit alluring ability for water splitting, which might provide a novel method to fabricate low-cost devices for electrochemical energy storage.  相似文献   

5.
Pt/TiO2光催化分解四硼酸钾水溶液制氢   总被引:1,自引:1,他引:1  
靳治良  吕功煊 《分子催化》2005,19(2):150-154
研究了以四硼酸钾溶液作反应体系,在1%Pt/TiO2光催化剂的作用下光催化分解水制氢的反应,发现该体系能使放氢速率明显提高.放氢速率还随B4O7^2-浓度的增大而增大.在此基础上,还对B4O7^2-的作用机理进行了探讨,BRO7^2-在该反应体系中主要是通过物理作用有效的阻止了逆反应的发生,从而使放氢速率得以提高.  相似文献   

6.
SiO2掺杂TiO2催化超声降解甲基橙溶液   总被引:25,自引:2,他引:25  
采用实验室合成的SiO2掺杂TiO2作为催化剂,以甲基橙超声降解反应为模型,研究了各种因素对SiO2掺杂TiO2催化超声降解甲基橙的影响.结果表明在SiO2掺杂TiO2催化剂作用下超声降解甲基橙的效果明显优于非掺杂的锐钛矿型TiO2的催化效果.SiO2掺杂TiO2催化剂用量在0.5~1.0g/L之间,超声波频率25kHz,输出功率1.0W/cm2,pH为1.0~3.0时,在甲基橙水溶液初始浓度20mg/L的条件下,80min,降解率达到了98%以上,COD的去除率也达到了99.0%.因此,SiO2掺杂TiO2催化超声降解有机污染物的方法具有很好的应用前景.  相似文献   

7.
This study shows the preparation of a TiO_2 coated Pt/C(TiO_2/Pt/C) by atomic layer deposition(ALD),and the examination of the possibility for TiO_2/Pt/C to be used as a durable cathode catalyst in polymer electrolyte fuel cells(PEFCs). Cyclic voltammetry results revealed that TiO_2/Pt/C catalyst which has 2 nm protective layer showed similar activity for the oxygen reduction reaction compared to Pt/C catalysts and they also had good durability. TiO_2/Pt/C prepared by 10 ALD cycles degraded 70% after 2000 Accelerated degradation test, while Pt/C corroded 92% in the same conditions. TiO_2 ultrathin layer by ALD is able to achieve a good balance between the durability and activity, leading to TiO_2/Pt/C as a promising cathode catalyst for PEFCs. The mechanism of the TiO_2 protective layer used to prevent the degradation of Pt/C is discussed.  相似文献   

8.
The use of electropolymerization to prepare electrocatalytically and photocatalytically active electrodes for water oxidation is described. Electropolymerization of the catalyst RuII(bda)(4‐vinylpyridine)2 (bda=2,2′‐bipyridine‐6,6′‐dicarboxylate) on planar electrodes results in films containing semirigid polymer networks. In these films there is a change in the water oxidation mechanism compared to the solution analogue from bimolecular to single‐site. Electro‐assembly construction of a chromophore–catalyst structure on mesoporous, nanoparticle TiO2 films provides the basis for a dye‐sensitized photoelectrosynthesis cell (DSPEC) for sustained water splitting in a pH 7 phosphate buffer solution. Photogenerated oxygen was measured in real‐time by use of a two‐electrode cell design.  相似文献   

9.
纳米TiO_2对诸多环境污染物有显著的光催化降解作用,光催化已发展成为新型环境污染治理技术.本文采用阳极氧化法制备出TiO_2纳米管,对比了四种电解液组成(A氟化铵+硫酸铵+水;B氟化铵+硫酸铵+乙酸+水;C氟化铵+硫酸铵+甘油+水;D氢氟酸+二甲基亚砜(DMOS)+乙醇)对催化剂表面形貌及光催化性能的影响.结果表明,电解液A和C都制备出了形貌清晰的TiO_2纳米管,管径约为60~74 nm.样品经400℃煅烧,TiO_2晶型主要为锐钛矿相;经500℃煅烧,出现少量金红石相;经700℃煅烧,晶型全部为金红石相.具有良好形貌的TiO_2纳米管同时具有良好的紫外光吸收能力.当亚甲基蓝初始浓度为10mg·L~(-1),经500℃煅烧的TiO_2纳米管光催化活性最佳,光照30 min亚甲基蓝的降解率达89.98%.亚甲基蓝光催化降解反应符合一级反应动力学,反应速率常数为0.079 30.  相似文献   

10.
众所周知, 传统化石燃料的大量使用不仅导致严重的环境污染和温室效应, 而且化石能源本身也面临着枯竭的危机.所以, 探索全新的、环境友善的、可持续发展的能源载体一直备受国内外科研工作者的关注. 氢能是一种清洁的可再生能源, 是有潜力的化石能源替代品. 水分解是一种有效的、理想的产氢途径, 然而水氧化反应是多质子多电子传递的过程, 是制约整个水分解过程的瓶颈. 目前, 基于贵金属(铱和钌)分子和氧化物的电催化剂已经被报道很多, 并且可以保持很好的催化活性; 但是, 这一类催化剂差的稳定性、昂贵的价格和少的地壳含量等因素严重制约了其大规模实际应用. 因此, 开发基于非贵金属(钴、镍、铁、铜、锰)的新型电催化剂材料是解决该问题的唯一出路, 但要保证电催化剂的高活性和好的稳定性仍面临着诸多挑战.在众多的非贵金属中, 铜是一种来源广泛的金属, 而且铜对生物体毒性较小. 由于铜具有良好的配位化学和多重的氧化还原特性, 近年来, 很多基于铜的水氧化电催化剂被开发和研究.我们在含有1.0 mmol/L Cu2+和2.0 mmol/L Tris配体的磷酸缓冲溶液(0.2 mol/L, pH = 12.0)中, 采用1.15 V vs. NHE恒电位电沉积的方法, 在ITO导电玻璃上制备出基于铜的水氧化催化剂薄膜(Cu-tricine). 对得到的催化剂薄膜进行扫描电镜(SEM)测试, 该催化剂均匀负载在ITO表面, 厚度大约是1.4 μm. 为了更加深入研究Cu-Tricine催化剂薄膜, 采用透射电子显微镜(TEM)和X射线衍射(XRD)对Cu-tricine催化剂进行表征, 结果表明, 该催化剂薄膜是一种结晶度较差的无定形材料. 同时, 为了研究催化剂薄膜的元素组成及其所处状态, 对催化剂进行了能量散射X射线能谱(EDX)和X射线光电子能谱(XPS)测试, 结果表明, 该催化剂由铜和氧元素组成, 并且铜是以正二价存在. 由高分辨O 1s XPS谱图分析结果可以推测, Cu-Tricine催化剂可能是由氧化铜和氢氧化铜组成. Cu-tricine催化剂的水氧化活性是在0.2 mol/L的磷酸缓冲溶液(pH =12.0)中进行测试, 从塔菲尔曲线中可以得出, 该催化剂达到1.0 mA/cm2的催化电流密度所需的过电位是395 mV, 塔菲尔斜率为46.7 mV/decade. 此外, 在1.15 V vs. NHE的电位下, 在10 h的电解过程中, Cu-tricine催化剂薄膜可以将催化电流密度一直保持在7.5 mA/cm2, 并且得到的法拉第效率为99%.  相似文献   

11.
The photocatalytic activity of (Ga(1-x)Zn(x))(N(1-x)O(x)) loaded with Rh-Cr mixed-oxide (Rh(2-y)Cr(y)O3) nanoparticles for overall water splitting under visible-light irradiation (lambda > 400 nm) is investigated with respect to reaction pH and gas pressure. The photocatalytic performance of the catalyst is found to be strongly dependent on the pH of the reactant solution but largely independent of gas pressure. The present photocatalyst exhibits stable and high photocatalytic activity in an aqueous solution of pH 4.5 for 72 h. The photocatalytic performance is much lower at pH 3.0 and pH 6.2, attributable to corrosion of the cocatalyst and hydrolysis of the catalyst. The dispersion of Rh(2-y)Cr(y)O3 as a cocatalyst on the (Ga(1-x)Zn(x))(N(1-x)O(x)) surface promotes hydrogen evolution, which is considered to be the rate-determining step for overall water splitting on this catalyst.  相似文献   

12.
Electrochemical modification is a mild and economical way to prepare electrocatalytic materials with abundant active sites and high atom efficiency. In this work, a stable NiFeCuPt carbon matrix deposited on nickel foam (NFFeCuPt) was fabricated with an extremely low Pt load (∼28 μg cm−2) using one-step electrochemical co-deposition modification, and it serves as a bifunctional catalyst for overall water splitting and achieves 100 mA cm−2 current density at a low cell voltage of 1.54 V in acidic solution and 1.63 V in alkaline solution, respectively. In addition, a novel electrolyte was developed to stabilize the catalyst under acidic conditions, which provides inspiration for the development of highly efficient, highly stable, and cost-effective ways to synthesize electrocatalysts.

Multiple metal elements immobilized into a carbon matrix to fabricate an ultra-stable water splitting electrocatalyst by one-step electrochemical modification.  相似文献   

13.
《中国化学快报》2023,34(2):107241
Developing bifunctional electrocatalysts for overall water splitting reaction is still highly desired but with large challenges. Herein, an amorphous FeCoNi-S electrocatalyst was developed using thioacetamide for the sulfuration of FeCoNi hydroxide during the hydrothermal process. The obtained catalyst exhibited an amorphous structure with hybrid bonds of metal-S bond and metal-O bonds in the catalyst system. The optimized catalyst showed a largely improved bifunctional catalytic ability to drive water splitting reaction in the alkaline electrolyte compared to the FeCoNi hydroxide. It required an overpotential of 280 mV and 80 mV (No-IR correction) to offer 10 mA/cm2 for water oxidation and reduction respectively; a low cell voltage of 1.55 V was required to reach 10 mA/cm2 for the water electrolysis with good stability for 12 h. Moreover, this catalyst system showed high catalytic stability, catalytic kinetics, and Faraday efficiency for water splitting reactions. Considering the very low intrinsic activity of FeCoNi hydroxide, the efficient bifunctional catalytic ability should result from the newly formed hybrid active sites of metallic metal-S species and the high valence state of metal oxide species. This work is effective in the bifunctional catalytic ability boosting for the transition metal materials by facile sulfuration in the hydrothermal approach.  相似文献   

14.
采用混合焙烧方法,制得TiO2/海泡石负载型催化剂,研究了在该催化剂催化作用下,水溶液中邻苯二甲酸二乙酯(DEP)的光催化降解行为.结果表明:催化剂的用量和TiO2的负载量对光催化降解速率都有影响.对于负载型催化剂,TiO2的负载量对其催化活性及DEP的降解速率有较大影响.当使用A101/海泡石催化剂,用量为2 g/L和4 g/L时,TiO2负载量的较佳值均为5%.并对负载型催化剂的形貌及晶型进行了X射线衍射(XRD)和扫描电子显微镜(SEM)分析.  相似文献   

15.
Ag/TiO2对含酚废水的光电催化降解   总被引:5,自引:0,他引:5  
Ag/TiO2对含酚废水的光电催化降解;Ag/TiO2; 光电催化; 苯酚;电解质  相似文献   

16.
Chen X  Xie J  Li C  Hu Z  Chen X 《Journal of separation science》2004,27(12):1005-1010
Peak splitting has a detrimental effect on analyses by capillary electrophoresis. Many papers have reported it and several mechanisms have been proposed to explain the phenomenon. We investigated the electrophoretic behavior of an amphoteric analyte, levodopa, in phosphate buffer and observed a peak splitting phenomenon at moderate sample concentrations and under general analytical conditions, even without organic solvent. The dependence of effective mobility on pH was taken into account and pKa values of 2.30, 8.11, and 9.92 were obtained for levodopa. Then, we constructed pH-dependent distribution diagrams of levodopa and phosphate species present in aqueous solution and proposed that the most relevant factors contributing to peak splitting are the presence of ionizable groups in the analyte molecule and the occurrence of ionization, yielding charged species which interacted with buffer electrolyte species in a definite pH range to form complexes. This result is different from those presented in the literature and broadens our understanding of amphoteric analyte peak splitting.  相似文献   

17.
In this study it is demonstrated that much higher concentrations of bases dissolved in water can be injected in capillary zone electrophoresis without causing peak deterioration, e.g., peak splitting, if it is the co-ion that buffers instead of the counter-ion. Those findings can be utilised to control peak shapes and in this way an increase in the sample load and indirectly a decrease in the detection limits of impurities in the sample can be obtained. Good results were obtained with 4-aminobutyric and 6-aminocaproic acids as buffering co-ions. Another possibility evaluated successfully was that of using a dibasic acid, malic acid or succinic acid. With an electrolyte containing both succinic acid and 6-aminocaproic acid at pH 4.5, it was possible to load at least 10-20 times more of the test substances imidazole, creatinine or 2-aminopyrimidine dissolved in water than with an electrolyte at the same pH containing acetic acid and tris(hydroxymethyl)aminomethane.  相似文献   

18.
TiO2催化超声降解亚甲基蓝溶液   总被引:8,自引:0,他引:8  
采用高温活化处理过的普通锐钛型TiO2为催化剂,研究了各种因素对亚甲基蓝超声降解反应的影响.结果表明:在普通锐钛型TiO2作用下,亚甲基蓝的超声降解效果明显优于单纯超声降解.降解动力学符合一级反应.在超声波频率 40kHz,输出功率 50W,催化剂用量 1. 0g/L,pH为 5. 16, 40℃,亚甲基蓝水溶液初始浓度 5mg/L的条件下, 120min左右降解率即可达到 80 %以上.  相似文献   

19.
Photocatalytic water splitting and carbon dioxide reduction provide us clean and sustainable energy resources. The carbon dioxide reduction is also the redemption of the greenhouse effect. MoS_3/TiO_2 photocatalysts based on TiO_2 nanoplates have been synthesized via a hydrothermal acidification route for water and carbon dioxide reduction reactions. This facile approach generates well dispersed Mo S3 with low crystallinity on the surface of TiO_2 nanoplates. The as-synthesized MoS_3/TiO_2 photocatalyst showed considerable activity for both water reduction and carbon dioxide reduction. The thermal treatment effects of TiO_2 , the loading percentage of MoS_3 and the crystalline phase of TiO_2 have been investigated towards the photocatalytic performance. TiO_2 nanoplate synthesized through hydrothermal reaction with the presence of HF acid is an ideal semiconductor material for the loading of MoS_3 for photocatalytic water and carbon dioxide reduction simultaneously in EDTA sacrificial solution.  相似文献   

20.
This work reports a facile and cost-effective method for synthesizing photoactive α-Fe(2)O(3) films as well as their performances when used as photoanodes for water oxidation. Transparent α-Fe(2)O(3) mesoporous films were fabricated by template-directed sol-gel chemistry coupled with the dip-coating approach, followed by annealing at various temperatures from 350 °C to 750 °C in air. α-Fe(2)O(3) films were characterized by X-ray diffraction, XPS, FE-SEM and electrochemical measurements. The photoelectrochemical performance of α-Fe(2)O(3) photoanodes was characterized and optimized through the deposition of Co-based co-catalysts via different methods (impregnation, electro-deposition and photo-electro-deposition). Interestingly, the resulting hematite films heat-treated at relatively low temperature (500 °C), and therefore devoid of any extrinsic dopant, achieve light-driven water oxidation under near-to-neutral (pH = 8) aqueous conditions after decoration with a Co catalyst. The onset potential is 0.75 V vs. the reversible hydrogen electrode (RHE), thus corresponding to 450 mV light-induced underpotential, although modest photocurrent density values (40 μA cm(-2)) are obtained below 1.23 V vs. RHE. These new materials with a very large interfacial area in contact with the electrolyte and allowing for a high loading of water oxidation catalysts open new avenues for the optimization of photo-electrochemical water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号