首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The electrochemical performances of fluorinated carbon nanofibres have been tested for a use as cathode material in primary lithium battery using LiBF4 PC:DME 1M as electrolyte. For a very narrow fluorination range (420–450 °C), the fluorine content in the carbon nanofibres increases up to CF0.78 and so do both the energy and the power densities. A maximum of 8057 W kg−1 power density has been reached. Moreover, a current density of 6C can be used for such fluorinated carbon nanofibres. Such high electrochemical values can be correlated to the amount of unfluorinated carbon located in the core of the carbon nanofibres. Owing to solid state 13C NMR which can accurately evaluated this fraction, a minimum of 10% of unfluorinated carbon nanofibre is necessary in order to insure a good conducting behaviour.  相似文献   

3.
Scalable, highly stable supercapacitor electrodes were developed from the mixture of a tea factory waste based activated carbon (AC) and a low-cost electrochemical exfoliated graphene (EEG). The hybrid electrodes showed notably enhanced stability at high current densities. The AC sample was prepared by chemical method and exposed to a further heat treatment to enhance electrochemical performance. Graphene used in the preparation of hybrid electrodes was obtained by direct electrochemical exfoliation of graphite in an aqueous solution. Detailed structural characterization of AC, EEG, and hybrid material was performed. The original electrochemical performances of AC and EEG were examined in button size cells using an aqueous electrolyte. The hybrid materials were prepared by mixing AC and EEG at different mass percentage ratios, and tested as supercapacitor electrodes under the same conditions. Capacitance stability of the electrodes developed from AC:EEG (70:30) at high currents increased by about 45% compared to the original AC. The highest gravimetric capacitance (110 F/g) was achieved by this hybrid electrode. The hybrid electrode was scaled up to the pouch size and tested using an organic electrolyte. The organic electrolyte was preferred for scaling up due to its wider voltage ranges. The pouch cell had a gravimetric capacitance of 85 F/g and exhibited as good performance as the coin cell in the organic electrolyte.  相似文献   

4.
We report the energy and power voltage-dependencies of supercapacitors using single-walled carbon nanotube electrodes. The energy density was dependent on the cell-voltage cubed (up to 4 V: E = 1.43 × V3). The cubic relationship was attributed to the linear increase of the capacitance as a function of voltage, enabled by electrochemical doping. Furthermore, while up to 3.5 V, the maximum power rating of the nanotube electrodes increased as a function of the cell-voltage squared, beyond 3.5 V, a decline in power was observed as a result of depletion of the electrolyte's ions.  相似文献   

5.
Spinel-based nanostructured materials are commonly used as promising electrode materials for supercapacitor applications. The combination of heteroatom-doped carbon material with spinel oxides substantially improves the specific capacitance and cyclic stability. In this work, dopamine-derived nitrogen-doped carbon was coated on spinel phase MnCo2O4 nanospheres using simple solvothermal and calcination methods. Surface morphology and the crystalline structure of the prepared MnCo2O4@Nitrogen-doped carbon were confirmed by FESEM and X-ray diffraction. The electrochemical performance of MnCo2O4@Nitrogen-doped carbon electrode material was analyzed by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. MnCo2O4@nitrogen-doped carbon exhibits the highest specific capacitance of 1200 F/g compared to MnCo2O4 spheres are 726 F/g at 1 A/g and exhibits excellent cyclic stability (capacitance retention of 87% at 7 A/g after 3000 cycles). The enhanced performance of the composite might be benefitted from the synergistic effect between nitrogen-doped carbon on porous MnCo2O4 spheres. Furthermore, an asymmetric supercapacitor device was fabricated by using the optimized composition of MnCo2O4@NC-2 as a positive electrode and nitrogen, sulfur-doped reduced graphene oxide (NS-rGO) as a negative electrode, respectively. This asymmetric supercapacitor device achieves a maximum energy density of 61.0 Wh/kg at a power density of 2889 W/kg and possesses excellent capacitance retention of 95% after 5000 cycles at 7 A/g.  相似文献   

6.
A flexible asymmetric supercapacitor is assembled using MnO2 nanosheets/carbon fabric and Fe2O3/carbon fabric electrodes. By optimizing the reaction condition of the two electrodes, the device shows high energy densities and excellent flexibility.  相似文献   

7.
《Journal of Energy Chemistry》2017,26(6):1252-1259
A flexible electrode of nickel diselenide/carbon fiber cloth(NiSe_2/CFC) is fabricated at room temperature by a simple and efficient electrodeposition method. Owing to NiSe_2 character of nanostructure and high conductivity, the as-synthesized electrodes possess perfect pseudocapacitive property with high specific capacitance and excellent rate capability. In three-electrode system, the electrode specific capacitance of the NiSe_2/CFC electrode varies from 1058 F g~(-1) to 996.3 F g~(-1) at 2 A g~(-1) to 10 A g~(-1) respectively, which shows great rate capability. Moreover, the NiSe_2 electrode is assembled with an active carbon(AC) electrode to form an asymmetric supercapacitor with an extended potential window of 1.6 V. The asymmetric supercapacitor possesses an excellent energy density 32.7 Wh kg~(-1) with a power density 800 W kg~(-1) at the current density of 1 A g~(-1). The nanosheet array on carbon fiber cloth with high flexibility, specific capacitance and rate capacitance render the NiSe_2 to be regarded as the promising material for the high performance superconductor.  相似文献   

8.
Journal of Solid State Electrochemistry - High energy consumption leads to the development of various energy types. As a result, the storage of these different types of energy becomes a key issue....  相似文献   

9.
Journal of Solid State Electrochemistry - In this paper, NiSe2 materials were synthesized on carbon fiber felts (CFF) using a convenient one-step microwave approach. Self-supporting NiSe2/CFF is a...  相似文献   

10.
MoO(3) nanoplates were prepared as anode material for aqueous supercapacitors. They can deliver a high energy density of 45 W h kg(-1) at 450 W kg(-1) and even maintain 29 W h kg(-1) at 2 kW kg(-1) in 0.5 M Li(2)SO(4) aqueous electrolyte. These results present a new direction to explore non-carbon anode materials.  相似文献   

11.
MnO2 nanowires were electrodeposited onto carbon nanotube (CNT) paper by a cyclic voltammetric technique. The as-prepared MnO2 nanowire/CNT composite paper (MNCCP) can be used as a flexible electrode for electrochemical supercapacitors. Electrochemical measurements showed that the MNCCP electrode displayed specific capacitances as high as 167.5 F g−1 at a current density of 77 mA g−1. After 3000 cycles, the composite paper can retain more than 88% of initial capacitance, showing good cyclability. The CNT paper in the composite acted as a good conductive and active substrate for flexible electrodes in supercapacitors, and the nanowire structure of the MnO2 could facilitate the contact of the electrolyte with the active materials, and thus increase the capacitance.  相似文献   

12.
We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles.  相似文献   

13.
Herein, we introduce the application of nickel hydroxide nanosheets on the electro-etched carbon fiber (ECF) formed via a direct electrodeposition, for fabrication of asymmetric supercapacitor. To confirm the practical applicability of prepared Ni(OH)2–ECF, an asymmetric device was assembled using Ni(OH)2–ECF in combination with an activated carbon (AC) electrode. Our results showed a substantial cycling stability (96% capacitance retention after 10000 cycles) and considerable rate capability at large discharge currents (60% capacitance retention at 8 A g??1) for this asymmetric supercapacitor that may have originated from the good contact between Ni(OH)2 and ECF. A maximum specific capacitance of 88.1 F g??1 was achieved for Ni(OH)2–ECF//AC/CF device and showed considerable rate capability at large discharge currents (60% capacitance retention at 8 A g??1). The results of this study suggest the Ni(OH)2–ECF electrode is an excellent material for fabrication of supercapacitor electrodes.  相似文献   

14.
15.
This paper describes a novel strategy to make fully transparent, solid-state and flexible supercapacitors based on room temperature ionic liquid (RTIL) gel and ITO electrodes coated on transparent polymer substrate without a separator, which enables the roll-to-roll technique for fabrication of such supercapacitors as printable devices. This is the first type of transparent electrochemical double layer capacitor (EDLC) based on ionic liquid gel.  相似文献   

16.
Two porous carbon materials, one synthesised by pyrolysis of an organic aerogel prepared using sol–gel method and the other synthesised from molybdenum carbide by high temperature chlorination method, were tested as supercapacitor electrode materials in a non-aqueous tetraalkylammonium salt-based electrolyte. The gravimetric capacitance values calculated for the carbon aerogel (CAG)-based system were almost two times smaller (~55?F?g?1) compared to carbide-derived carbon (C(Mo2C))-based system (~125?F?g?1). However, due to the very wide region of ideal polarizability, 3.6?V for C(Mo2C) and 3.8?V for CAG-based test cells, very high energy densities up to 63?Wh?kg?1 (34?Wh?dm?3) and power densities up to 757?kW?kg?1 (314?kW?dm?3) were estimated for these systems, respectively. CAG-based system shows very short characteristic charge/discharge time constant values (0.05?s).  相似文献   

17.
The ionic liquid 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide (BDMIM-TFSI) showed a conductivity of 1.65?mS cm?1 and an electrochemical stability window of 4.4?V at room temperature. Two types of electrodes based on carbon nanomaterials were prepared: (1) with alternating layers of two oppositely charged functionalized double-walled carbon nanotubes (DWCNTs) and (2) with the functionalized DWCNTs and graphene oxide nanoplatelets. The electrodes presented a porous morphology and a connected pathway between the carbon nanotubes and graphene oxide platelets. Electrochemical capacitors based on the carbon nanomaterials and BDMIM-TFSI were produced in a stacking configuration and were characterized at 25?°C, 60?°C, and 100?°C. The supercapacitors with electrodes based on the three alternating layers of two oppositely charged DWCNTs and graphene oxide presented higher values of capacitance, which were attributed to a morphology favorable to providing ionic access to the carbonaceous surface. Box-like voltammetric curves were used to calculate the capacitance in a 4-V potential window at 100?°C.  相似文献   

18.
19.
We have characterized symmetric solid-state supercapacitors in swagelok cells using film electrodes made of novel hybrid materials based on multiwalled carbon nanotubes (CNT) and phosphomolybdate polyanion (Cs-PMo12) with PVA as binder. These hybrid materials were carried out by Cs-PMo12 adhesion onto previously functionalized CNT, in order to disperse both components at a molecular level and use Cs-PMo12 as energy density enhancer in supercapacitor cells. Our results show high capacitance values (up to 285 F/g at I = 200 mA/g) due to the contribution of Cs-PMo12, which was revealed on the higher energy density values compared to pure CNT electrodes. Additionally, good stability was observed during 500 charge–discharge cycles for most hybrid electrodes. These preliminary results show a new approach to enhance energy density of double layer supercapacitor cells through the introduction of Cs-PMo12, whereas from a material science point of view these materials are innovative, and open the way to search for diverse applications aside from supercapacitors (sensors, catalysts, photovoltaic cells, etc.).  相似文献   

20.
The first asymmetric Mannich-type reaction of methyl isocyanoacetate with N-sulfonylimines catalyzed by cinchona alkaloid derivatives yielded 2-imidazolines with high diastereoselectivities and good enantioselectivities (up to >99:1 dr and 70% ee). This reaction provided a convenient route to access various substituted 2-imidazoline-4-carboxylates and related α,β-diamino acids in high enantiomeric purities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号