首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multilayer assembly of nanowire arrays for dye-sensitized solar cells   总被引:1,自引:0,他引:1  
Vertically ordered nanostructures synthesized directly on transparent conducting oxide have shown great promise for overcoming the limitations of current dye-sensitized solar cells (DSCs) based on random networks of nanoparticles. However, the synthesis of such structures with a high internal surface area has been challenging. Here we demonstrate a convenient approach that involves alternate cycles of nanowire growth and self-assembled monolayer coating processes for synthesizing multilayer assemblies of ZnO nanowire arrays and using the assemblies for fabrication of DSCs. The assembled multilayer ZnO nanowire arrays possess an internal surface area that is more than 5 times larger than what one can possibly obtain with single-layer nanowire arrays. DSCs fabricated using such multilayer arrays yield a power conversion efficiency of 7%, which is comparable to that of TiO(2) nanoparticle-based DSCs. The ordered structure with a high internal surface area opens up opportunities for further improvement of DSCs.  相似文献   

2.
Dye-sensitized solar cells (DSSCs) based on ordered photoanode morphologies, such as nanotubes and nanowires, are widely gaining attention because these geometries are believed to enhance interfacial charge transfer and bulk charge transport. Unfortunately, experimental results have yet to show substantial improvement to conversion efficiency over nanoparticle-based DSSCs. A model is developed to characterize the performance of an idealized photoanode based on an ordered array of transparent conductive nanowires coated with an anatase titania shell. The role of the interfacial electric field in nanowire-based DSSCs is explored computationally by turning electron migration ON or OFF. The results show that back-reaction rates are most strongly influenced by the electric field. These electron loss mechanisms can be reduced by several orders of magnitude, leading to improvements in short-circuit current, open-circuit voltage, and fill factor.  相似文献   

3.
4.
Highly ordered anodized Nb2O5 nanochannels are synthesized and utilized as the photoanodes for dye-sensitized solar cells (DSSCs). We characterize these DSSCs to determine the optimum photoanode thickness for the best cell performance. The samples with thicknesses from 5 to 25 μm are obtained in glycerol based electrolyte at 180 °C and their photoconversion properties are investigated utilizing various techniques including photocurrent–voltage characteristic, photovoltage decay and electrochemical impedance spectroscopy. Overall, the DSSC incorporating a 10 μm thick Nb2O5 photoanode shows the highest efficiency of 4.48%. We analyze the factors that limit the efficiency of DSSCs.  相似文献   

5.
6.
A titanium oxide layer used in a dye-sensitized solar cell (DSSC) has to meet two opponent properties to enable high conversion efficiency: a large surface area (for high dye loading) and good connection between TiO2 grains (for efficient extraction of electrons toward the front contact). In order to meet a trade-off between these criteria a preparation method for TiO2 paste formulation based on Pechini sol–gel method and commercial nanocrystalline TiO2 powder has been developed. A series of TiO2 pastes with different molar ratios between titanium isopropoxide, citric acid and ethylene glycol (1:X:4X) in the paste have been examined. The structure and morphology as well as cross-cut tests of deposited and sintered TiO2 layers have been analyzed. Results reveal that the paste with X = 8 exhibits the best properties, resulting in an overall conversion efficiency of DSSC under standard test conditions (100 mW/cm2, 25 °C, AM 1.5G) up to 6.6% for ionic liquid based electrolyte.  相似文献   

7.
The review presented below summarizes the up-to-date research efforts in using one-dimensional TiO(2) nanomaterials in dye-sensitized solar cells. A brief account of the methods of synthesis of the anisotropic nanomaterials as well as their photovoltaic performance in DSCs was summarily presented. The usefulness of the materials as scattering layer in DSCs was also surveyed.  相似文献   

8.
9.
蓝紫色ZnO-Al2O3-SiO2长余辉陶瓷   总被引:4,自引:1,他引:4  
通过高温固相法首次合成并报道了兰紫色ZnO-Al2O3-SiO2长余辉陶瓷,系统地研究了其发光和缺陷性质,在强度0.6mW.cm^-2,主峰254nm的UVP紫外灯下激发15min,然后关闭激发源,样品发射兰紫色长余辉,撤去激发源以后5s,余辉初始强度为230mcd.m^-1,色坐标为(0.1292,0.0984),暗视场中,8h以后余辉仍然肉眼可辨,样品的紫外可见发射和不同时间的余辉发射光谱显示,荧光发射位于390nm,来源于基质的自致发光,而余辉有两个发射峰,主峰位于390nm,肩峰位于520nm,这表明样品中存在两种余辉发射中心,由余辉衰减曲线可以看出,这两种余辉发光都由一个快过程和一个慢过程组成,其中,慢过程决定了材料的长余辉时间,从时间依赖的余辉强度倒数曲线可以看出,余辉强度与时间成反比,这表明余辉发光的机理为电子空穴复合过程,热释光谱显示,样品分别在92和250℃附近出现两个宽的热释峰,说明材料中至少存在两种具有不同陷阱深度的电子或空穴缺陷中心。  相似文献   

10.
Core-shell type nanoparticles with SnO2 and TiO2 cores and zinc oxide shells were prepared and characterized by surface sensitive techniques. The influence of the structure of the ZnO shell and the morphology ofnanoparticle films on the performance was evaluated. X-ray absorption near-edge structure and extended X-ray absorption fine structure studies show the presence of thin ZnO-like shells around the nanoparticles at low Zn levels. In the case of SnO2 cores, ZnO nanocrystals are formed at high Zn/Sn ratios (ca. 0.5). Scanning electron microscopy studies show that Zn modification of SnO2 nanoparticles changes the film morphology from a compact mesoporous structure to a less dense macroporous structure. In contrast, Zn modification of TiO2 nanoparticles has no apparent influence on film morphology. For SnO2 cores, adding ZnO improves the solar cell efficiency by increasing light scattering and dye uptake and decreasing recombination. In contrast, adding a ZnO shell to the TiO2 core decreases the cell efficiency, largely owing to a loss of photocurrent resulting from slow electron transport associated with the buildup of the ZnO surface layer.  相似文献   

11.
Partially nanowire-structured TiO2 was prepared by a hydrothermal processing followed by calcination in air. The hydrogen titanate powder as-synthesized was calcined at 300 °C for 4 h to obtain the partially nanowire-structured TiO2. A dye-sensitized solar cell (DSC) with a film thickness of 5.6 μm, fabricated using the partially nanowire-structured TiO2 showed better performance than using a fully nanowire-structured TiO2 or a conventional equi-axed TiO2 nanopowder. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF) and the overall efficiency (η) are 11.9 mA/cm2, 0.754 V, 0.673 and 6.01 %, respectively. The effects of one-dimensional nanostructure and electron expressway concept are discussed.  相似文献   

12.
Journal of Solid State Electrochemistry - In present study, hollow urchin-like nanostructures of Nb2O5 with elongated nanofilaments as photoanode material for dye-sensitized solar cells (DSSCs) are...  相似文献   

13.
A new compound, LiI(3-hydroxypropionitrile)(2), is reported here. According to its single-crystal structure (C2/c), this compound has 3-D transporting paths for iodine. Further ab initio calculation shows that the activation energy for diffusion of iodine (0.73 eV) is much lower than that of lithium ion (8.39 eV) within the lattice. Such a mono-ion transport feature is favorable as solid electrolyte to replace conventional volatile organic liquid electrolytes used in dye-sensitized solar cells (DSSC). LiI and 3-hydroxypropionitrile (HPN) can form a series of solid electrolytes. The highest ambient conductivity is 1.4 x 10(-)(3) S/cm achieved for LiI(HPN)(4). However, it tends to form large crystallites and leads to poor filling and contact within porous TiO(2) electrodes in DSSC. Such a drawback can be greatly improved by introducing micrometer-sized and nanosized SiO(2) particles into the solid electrolyte. It is helpful not only in enhancing the conductivity but also in improving the interfacial contact greatly. Consequently, the light-to-electricity conversion efficiency of 5.4% of a DSSC using LiI(HPN)(4)/15 wt % nano-SiO(2) was achieved under AM 1.5 simulated solar light illumination. Due to the low cost, easy fabrication, and relatively high conversion efficiency, the DSSC based on this new solid-state composite electrolyte is promising for practical applications.  相似文献   

14.
15.
We elaborated a new electrolyte composition, based on butyronitrile solvent, that exhibits low volatility for use in dye-sensitized solar cells. The strong point of this new class of electrolyte is that it combines high efficiency and excellent stability properties, while having all the physical characteristics needed to pass the IEC 61646 stability test protocol. In this work, we also reveal a successful approach to control, in a sub-Nernstian way, the energetics of the distribution of the trap states without harming cell stability by means of incorporating NaI in the electrolyte, which shows good compatibility with butyronitrile. These excellent features, in conjunction with the recently developed thiophene-based C106 sensitizer, have enabled us to achieve a champion cell exhibiting 10.0% and even 10.2% power conversion efficiency (PCE) under 100 and 51.2 mW·cm(-2) incident solar radiation intensity, respectively. We reached >95% retention of PCE while displaying as high as 9.1% PCE after 1000 h of 100 mW·cm(-2) light-soaking exposure at 60 °C.  相似文献   

16.
A novel fiber-shaped dye-sensitized solar cell (DSSC) based on an all-carbon electrode is presented, where low-cost, highly-stable, and biocompatible carbon materials are applied to both the photoanode and the counter electrode. The fibrous carbon-based photoanode has a core-shell structure, with carbon fiber core used as conductive substrate to collect carriers and sensitized porous TiO(2) film as shell to harvest light effectively. The highly catalytic all-carbon counter electrode is made from ink carbon coatings and carbon fiber substrate. Results show that the open circuit voltage can be largely improved through engineering at the carbon fiber/TiO(2) interface. An optimized diameter of the photoanode results in an efficiency of 1.9%. It is the first demonstration of efficient DSSCs based on all-carbon electrodes, and the devices are totally free from TCOs or any other expensive electrode materials. Also, this type of solar cell is significant in obtaining bio-friendly all-carbon photovoltaics suitable for large-scale production.  相似文献   

17.
Modern dye-sensitized solar cell (DSSC) technology was built upon nanoparticle wide bandgap semiconductor photoanodes. While versatile and robust, the sintered nanoparticle architecture exhibits exceedingly slow electron transport that ultimately restricts the diversity of feasible redox mediators. The small collection of suitable mediators limits both our understanding of an intriguing heterogeneous system and the performance of these promising devices. Recently, a number of pseudo-1D photoanodes that exhibit accelerated charge transport and greater materials flexibility were fabricated. The potential of these alternative photoanode architectures for advancing, both directly and indirectly, the performance of DSSCs is explored.  相似文献   

18.
The present review offers a survey of liquid electrolytes used in dye-sensitized solar cells from the beginning of photoelectrochemical cell research. It handles both the solvents employed, and the prerequisites identified for an ideal liquid solvent, as well as the various effects of electrolyte solutes in terms of redox systems and additives. The conclusions of the present review call for more detailed molecular insight into the electrolyte-electrode interface reactions and structures.  相似文献   

19.
Optimizing dyes for dye-sensitized solar cells   总被引:3,自引:0,他引:3  
Dye-sensitized solar cells (DSSCs) have emerged as an important cheap photovoltaic technology. Charge separation is initiated at the dye, bound at the interface of an inorganic semiconductor and a hole-transport material. Careful design of the dye can minimize loss mechanisms and improve light harvesting. Mass application of DSSCs is currently limited by manufacturing complexity and long-term stability associated with the liquid redox electrolyte used in the most-efficient cells. In this Minireview, dye design is discussed in the context of novel alternatives to the standard liquid electrolyte. Rapid progress is being made in improving the efficiencies of such solid and quasi-solid DSSCs which promises cheap, efficient, and robust photovoltaic systems.  相似文献   

20.
Journal of Solid State Electrochemistry - Dye-sensitized solar cells (DSSCs) based on TiO2 nanostructures have attracted much attention due to their high photoconversion efficiency. Here, we report...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号