首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
An octyl-functionalized hybrid silica monolithic column was developed for in-tube solid-phase microextraction (SPME) to perform on-line preconcentration coupled to capillary high-performance liquid chromatography (microHPLC) analysis. A hybrid silica monolithic column functionalized with octyl groups was conveniently synthesized by a two-step acid/base-catalyzed hydrolysis/co-condensation of tetraethoxysilane (TEOS) and n-octyltriethoxysilane (C8-TEOS). The size of through-pores as well as the carbon content can be adjusted by changing the ratio of TEOS to C8-TEOS in the polymerization mixture. The extraction characteristics of the monolithic column prepared under optimized fabrication conditions were studied by using polycyclic aromatic hydrocarbons (PAHs) as the analytes. The sample volume that could be injected into the system was increased up to 1mL with simultaneous increase of column efficiency, when hybrid silica monolithic column was used as a precolumn. Good linear calibration curves (R>0.999) were obtained, and the limits of detection (signal-to-noise ratio, S/N=3) for the analytes were found to be between 2.4 and 8.1ng/mL with a UV absorbance detector, which are 299-456 times lower than those obtained without preconcentration. The column-to-column RSD values were 1.3-8.0% for recoveries of PAHs investigated.  相似文献   

2.
Yu QW  Ma Q  Feng YQ 《Talanta》2011,84(4):2989-1025
The silica nanoparticle (SiO2 NP)-deposited capillary fabricated by liquid phase deposition (LPD) was bonded by 3-(triethoxysilyl) propyl methacrylate and then modified with poly(N-isopropylacrylamide) (PNIPAAm) by polymerization. The resulting PNIPAAm modified SiO2 NP-deposited capillary was applied to in-tube solid-phase microextraction coupled to high-performance liquid chromatography (in-tube SPME-HPLC). To investigate the extraction performance of the prepared capillary, diethylstilbestrol (DES) with moderate polarity was selected as the model analyte. Results demonstrate that PNIPAAm modified SiO2 NP-deposited capillary exhibited obvious temperature responsive character. Finally, the PNIPAAm modified SiO2 NP-deposited capillary was applied to the analysis of three synthetical estrogens from milk samples. The detection limit of the method was found to be in the range 1.2-2.2 ng/g, and recovery was 71.7-98.9% with relative standard deviations in the range of 2.8-12.6%.  相似文献   

3.
A silica nanoparticle (NP)-deposited capillary fabricated by liquid-phase deposition (LPD) and modified with octadecyl groups was introduced for in-tube solid-phase microextraction coupled to high-performance liquid chromatography with UV detection (in-tube SPME–HPLC). The resultant capillary (60 cm × 50 μm I.D.) was demonstrated to be of higher extraction capacity by comparing with an octadecyl-grafted bare capillary and an octadecyl-grafted silica-coated capillary that was prepared by sol–gel chemistry. Two groups of compounds, endocrine disruptors and polycyclic aromatic hydrocarbons, were used as model analytes to further evaluate extraction capacity of the silica NP-deposited capillary, and its reproducibility and stability was also investigated. The extraction time profiles were monitored for all the chemicals, and their limits of detection were calculated to be in the range of 0.42–0.78 and 0.034–0.19 ng/mL with RSD values of peak area less than 4.6%.  相似文献   

4.
A simple, rapid, and sensitive method using in-tube solid-phase microextraction (in-tube SPME) based on poly(methacrylic acid–ethylene glycol dimethacrylate) (MAA–EGDMA) monolith coupled to HPLC with fluorescence and UV detection was developed for the determination of five fluoroquinolones (FQs). Ofloxacin (OFL), norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENRO), and sarafloxacin (SARA) can be enriched and determined in the spiked eggs and albumins. CIP/ENRO in eggs and albumins of ENRO-treated hens were also studied using the proposed method. Only homogenization, dilution, and centrifugation were required before the sample was supplied to the in-tube microextraction, and no organic solvents were consumed in the procedures. Under the optimized extraction conditions, good extraction efficiency for the five FQs was obtained with no matrix interference in the process of extraction and the subsequent chromatographic separation. The detection limits (S/N=3) were found to be 0.1–2.6 ng g−1 and 0.2–2.4 ng g−1 in whole egg and egg albumin, respectively. Good linearity could be achieved over the range 2–500 ng mL−1 for the five FQs with regression coefficients above 0.9995 in both whole egg and albumin. The reproducibility of the method was evaluated at three concentration levels, with the resulting relative standard deviations (RSDs) less than 7%. The method was successfully applied to the analysis of ENRO and its primary metabolite CIP in the eggs and albumins of ENRO-treated hens.  相似文献   

5.
An online device is described in which analytes are extracted from a liquid sample by means of in-tube solid-phase microextraction (in-tube SPME), pulse released by rapid heating, and transferred to a gas chromatograph in a fully automated way. Switching of the sample and gas flows as well as the heating of the extraction tube and the valves is controlled by a remote computer system. Results obtained for river water and for aqueous standard solutions of phenanthrene are presented and are compared to the performance of standard SPME.  相似文献   

6.
This paper compares the advantages and disadvantages of two different configurations for the extraction of triazines from water samples: (1) on-fibre solid-phase microextraction (SPME) coupled to conventional liquid chromatography (LC); and (2) in-tube SPME coupled to capillary LC. In-tube SPME has been effected either with a packed column or with an open capillary column. A critical evaluation of the main parameters affecting the performance of each method has been carried out in order to select the most suitable approach according to the requirements of the analysis. In the on-fibre SPME configuration the fibre coating was polydimethylsiloxane (PDMS)-divinylbenzene (DVB). The limits of detection (LODs) obtained with this approach under the optimized extraction and desorption conditions were between 25 and 125 microg/L. The in-tube SPME approach with a C18 packed column (35 mm x 0.5 mm I.D., 5 microm particle size) connected to a switching micro-valve provided the best sensitivity; under such configuration the LODs were between 0.025 and 0.5 microg/L. The in-tube SPME approach with an open capillary column coated with PDMS (30 cm x 0.25 mm I.D., 0.25 microm of thickness coating) connected to the injection valve provided LODs between 0.1 and 0.5 microg/L. In all configurations UV detection at 230 nm was used. Atrazine, simazine, propazine, ametryn, prometryn and terbutryn were selected as model compounds.  相似文献   

7.
An automated on-line method for the determination of the isoflavones, daidzein and genistein, was developed using in-tube solid-phase microextraction coupled to high-performance liquid chromatography (in-tube SPME-HPLC). In-tube SPME is a new extraction technique for organic compounds in aqueous samples, in which analytes are extracted from the sample directly into an open tubular capillary by repeated draw/eject cycles of sample solution. Daidzein, genistein and their glucosides tested in this study were clearly separated within 8 min by HPLC using an XDB-C8 column with diode array detection. In order to optimize the extraction of these compounds, several in-tube SPME parameters were examined. The glucosides daidzin and genistin were analyzed as aglycones after hydrolysis because the glucosides were not concentrated by in-tube SPME. The optimum extraction conditions for daidzein and genistein were obtained with 20 draw/eject cycles of 40 microl of sample using a Supel-Q porous layer open tubular capillary column. The extracted compounds were easily desorbed from the capillary by mobile phase flow, and carryover was not observed. Using the in-tube SPME-HPLC method, the calibration curves of these compounds were linear in the range 5-200 ng/ml, with a correlation coefficient above 0.9999 (n = 18), and the detection limits (S/N = 3) were 0.4-0.5 ng/ml. This method was successfully applied to the analysis of soybean foods without interference peaks. The recoveries of aglycones and glucosides spiked into food samples were above 97%.  相似文献   

8.
A hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolithic capillary was prepared and investigated for in-tube solid-phase microextraction (SPME). The polymer monolith was synthesized by in-situ polymerization of GMA and EDMA in the presence of dodecanol and toluene as the mixed porogenic solvents. After polymerization, glycidyl groups were hydrolyzed with sulfuric acid to produce diol groups at the surface of the porous monolith. To investigate the extraction mechanism, several groups of model analytes (including neutral, acidic and basic) were selected to perform extractions. The resulting monolith showed high extraction selectivity towards polar compounds, which resulted from the enhancement of dipole-dipole and hydrogen bonding interactions relative to hydrophobic interactions. The equilibrium extraction time profiles were also monitored for those model compounds to assess the extraction capacity of the monolithic capillary. Moreover, the hydroxylated poly(GMA-co-EDMA) monolithic capillary exhibited satisfactory reproducibility and stability. Finally, the in-tube SPME-HPLC method, based on the developed monolithic capillary as the extraction media, was successfully applied to the determination of five polar organic contaminants in lake water.  相似文献   

9.
Wen Y  Wang Y  Feng YQ 《Talanta》2006,70(1):153-159
An on-line simple and rapid method for the simultaneous determination of tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and doxycycline (DC) residues in fish muscle was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with a photodiode array detector. Biocompatible poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary was selected as the extraction medium, and no precipitating protein and removing fat steps were required prior to extraction. In order to optimize the extraction of these compounds, several in-tube SPME parameters were investigated. Simply performed by extracting with 0.01 M EDTA-MacIlvaine buffer solution (pH 4.0) and centrifugation, the sample then could be directly injected into the device for extraction. The limits of detection of tetracycline, oxytetracycline, chlortetracycline and doxycycline were calculated to be 22, 16, 30 and 21 ng/g, respectively. The calibration curves showed linearity in the range of 100-10,000 ng/g with a linear coefficient R2 value above 0.9980. Excellent method reproducibility was found by intra- and inter-day precisions, yielding the R.S.D.s less than 4.22% and 5.71%, respectively.  相似文献   

10.
A poly(methacrylic acid-ethylene glycol dimethacrylate, MAA-EGDMA) monolithic capillary was used for the direct and on-line extraction of telmisartan from Sprague-Dawley rat tissue (heart, kidney, and liver) homogenates. Under optimized conditions, the tissue homogenates were simply diluted with a mixture of phosphate buffer (pH 2)/ACN (90:8 v/v), and then injected for extraction only after centrifugation and filtration. Coupled to HPLC with fluorescence detection, the method was linear over the range of 1.25-1500 ng/g for telmisartan in heart and kidney, 12.5-15 000 ng/g in liver with correlation coefficients over 0.9992. The detection limits were found to be in the range from 0.24 to 1.8 ng/g. RSDs for intra- and inter-day ranged from 1.2 to 8.1%. The determination of telmisartan in treated rat tissues was achieved by using the proposed method.  相似文献   

11.
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) for the analysis of hydroxyaromatic compounds is described. Three kinds of fibers [50 microns carbowax-templated resin (CW-TPR), 60 microns polydimethylsiloxane-divinylbenzene (PDMS-DVB) and 85 microns polyacrylate (PA) fibers] were evaluated. CW-TPR and PDMS-DVB were selected for further study. The parameters of the desorption procedure (such as desorption mode, the composition of the solvent for desorption and the duration of fiber soaking) were studied and optimized. The effect of the structure and physical properties of analytes, carryover, duration of absorption, temperature of absorption, pH and ionic strength of samples were also investigated. The method was applied to environmental samples (lake water) using a simple calibration curve.  相似文献   

12.
In-tube solid-phase microextraction (SPME) based on a poly(acrylamide-vinylpyridine-N,N'-methylene bisacrylamide) monolithic capillary was investigated and on-line coupled to HPLC for the determination of trace analytes in aqueous samples. The polymer monolith was conveniently synthesized in a fused silica capillary by in situ polymerization method. Several groups of analytes including non-steroidal anti-inflammatory drugs, phenols, non-peptide angiotensin II receptor antagonists and endocrine disrupting chemicals were extracted by the monolithic capillary. High extraction efficiency was achieved for the analytes investigated and great improvement of the limits of detection were obtained in comparison to that of direct chromatographic analysis and strong hydrophobic and ion-exchange interactions between the analytes and the polymer were confirmed. The newly developed monolithic capillary showed excellent reusability and high stability under extreme pH conditions during extraction. The possibility of applying the established method to water sample analysis was also demonstrated.  相似文献   

13.
A simple, rapid and sensitive on-line method for the simultaneous determination of benzoic and sorbic acids in food was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with UV detection. The diethylamine-modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary selected as the extraction medium exhibited a high extraction capability towards benzoic and sorbic acids. To obtain optimum extraction performance, several in-tube SPME parameters were investigated, including pH value, inorganic salt, and the organic solvent content of the sample matrix. After simple dilution with 0.02 mol/L phosphate solution (pH 4.0), carbonated drink, juice drink, sauce and jam samples could be directly injected for extraction. For succade samples, a small amount of acetonitrile was required to extract analytes prior to dilution and subsequent extraction. The linearity of the method was investigated over a concentration range of 5–20000 ng/mL for both analytes, and the correlation coefficients (R 2 values) were higher than 0.999. The detection limits for benzoic and sorbic acids were 1.2 and 0.9 ng/mL, respectively. The method reproducibility was tested by evaluating the intra- and interday precisions; relative standard deviations of less than 4.4 and 9.9%, respectively, were obtained. Recoveries of compounds from spiked food samples ranged from 84.4 to 106%. The developed method was shown to be suitable for the routine monitoring of benzoic and sorbic acids in various types of food samples.  相似文献   

14.
Fan Y  Zhang M  Da SL  Feng YQ 《The Analyst》2005,130(7):1065-1069
A method for the determination of endocrine disruptors, bisphenol A and 17alpha-ethinylestradiol, in environmental water samples was developed using in-tube solid-phase microextraction followed by liquid chromatography and fluorescence detection. A poly(acrylamide-vinylpyridine) monolithic capillary column was applied as the extraction media in view of its greater phase ratio than open-tubular capillaries and thus higher extraction efficiency. After optimizing the extraction conditions, bisphenol A and 17alpha-ethinylestradiol were extracted directly from water samples in a wide dynamic linear range of 0.5-1000 ng mL(-1), with the detection limits obtained as 0.064 and 0.12 ng mL(-1), respectively. The precision of the method was satisfactory with the intraday and interday RSD values smaller than 7.2%. Environmental water samples of different sources were successfully analyzed with the presented method and the monolithic capillary was proved to be robust and reusable in analyzing real water samples.  相似文献   

15.
Huang SD  Huang HI  Sung YH 《Talanta》2004,64(4):887-893
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) for the determination of triazine is described. Carbowax/templated resin (CW/TPR, 50 μm), polydimethylsiloxane/divinylbenzene (PDMS/DVB, 60 μm), polydimethylsiloxane (PDMS, 100 μm), and polyacrylate (PA, 85 μm) fibers were evaluated for extraction of the triazines. CW/TPR and PDMS/DVB fibers were selected for further study. Several parameters of the extraction and desorption procedure were studied and optimized (such as types of fibers, desorption mode, desorption time, compositions of solvent for desorption, soaking periods and the flow rate during desorption period, extraction time, temperature, pH, and ionic strength of samples). Both CW/TPR and PDMS/DVB fibers are acceptable; a simple calibration-curve method based on simple aqueous standards can be used. The linearity of this method for analyzing standard solution has been investigated over the range 5-1000 ng mL−1 for both PDMS/DVB and CW/TPR fibers. All the correlation coefficients in the range 5-1000 ng mL−1 were better than 0.995 except Simazine and Atratone by CW/TPR fiber. The R.S.D.s range from 4.4% to 8.8 % (PDMS/DVB fiber) and from 2.4% to 7.2% (CW/TPR fiber). Method-detection limits (MDL) are in the range 1.2-2.6 and 2.8-3.4 ng mL−1 for the two fibers. These methods were applied to the determination of trazines in environmental water samples (lake water).  相似文献   

16.
The performance of a monolithic C(18) column (150 mm×0.2 mm i.d.) for multiresidue organic pollutants analysis by in-tube solid-phase microextraction (IT-SPME)-capillary liquid chromatography has been studied, and the results have been compared with those obtained using a particulate C(18) column (150 mm×0.5 mm i.d., 5 μm). Chromatographic separation has been carried out under isocratic elution conditions, and for detection and identification of the analytes a UV-diode array detector has been employed. Several compounds of different chemical structure and hydrophobicity have been used as model compounds: simazine, atrazine and terbutylazine (triazines), chlorfenvinphos and chlorpyrifos (organophosphorous), diuron and isoproturon (phenylureas), trifluralin (dinitroaniline) and di(2-ethylhexyl)phthalate. The results obtained revealed that the monolithic column was clearly advantageous in the context of multiresidue organic pollutants analysis for a number of reasons: (i) the selectivity was considerably improved, which is of particular interest for the most polar compounds triazines and phenyl ureas that could not be resolved in the particulate column, (ii) the sensitivity was enhanced, and (iii) the time required for the chromatographic separation was substantially shortened. In this study it is also proved that the mobile-phase flow rates used for separation in the capillary monolithic column are compatible with the in-valve IT-SPME methodology using extractive capillaries of dimensions similar to those used in conventional scale liquid chromatography (LC). On the basis of these results a new method is presented for the assessment of pollutants in waters, which permits the characterization of whole samples (4 mL) in less than 30 min, with limits of detection in the range of 5-50 ng/L.  相似文献   

17.
将管内固相微萃取与气相色谱法结合,建立了水中痕量有机物的在线分析装置。采用毛细管气相色谱柱作为萃取柱,水样中的分析物在萃取柱中被萃取浓缩,溶剂解吸后的样品通过阀切换和柱内进样技术直接由载气携带进入气相色谱柱。采用OV-1萃取柱,对水样中的5种芳烃的富集倍数为34~85。  相似文献   

18.
In-tube solid-phase microextraction (in-tube SPME) coupled with high performance liquid chromatography (HPLC) or liquid chromatography coupled to mass spectrometry (LC-MS) successfully determines drugs or biomarkers in biological samples by direct sample injection or by simple sample treatment. This technique uses a capillary column as extraction device. Several capillaries (wall-coated open tubular, sorbent-packed, porous monolithic rods, or fiber-packed) with unique phases have been developed and evaluated, aiming to improve the efficiency and selectivity of the in-tube SPME-LC technique. This review describes new developments and applications occurred in recent years, and discusses future trends with emphasis on new extraction devices and current technology used for the synthesis of selective sorbents for bioanalysis, such as (i) polypyrrole, (ii) restricted-access materials, (iii) immunosorbents, (iv) molecular imprinting polymers, (v) monolithic polymers, and (vi) bi-functional materials.  相似文献   

19.
A simple and sensitive automated method, consisting of in-tube solid-phase microextraction (SPME) coupled with high-performance liquid chromatography-fluorescence detection (HPLC-FLD), was developed for the determination of 15 polycyclic aromatic hydrocarbons (PAHs) in food samples. PAHs were separated within 15 min by HPLC using a Zorbax Eclipse PAH column with a water/acetonitrile gradient elution program as the mobile phase. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL of sample using a CP-Sil 19CB capillary column as an extraction device. Low- and high-molecular weight PAHs were extracted effectively onto the capillary coating from 5% and 30% methanol solutions, respectively. The extracted PAHs were readily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME HPLC-FLD method, good linearity of the calibration curve (r > 0.9972) was obtained in the concentration range of 0.05–2.0 ng/mL, and the detection limits (S/N = 3) of PAHs were 0.32–4.63 pg/mL. The in-tube SPME method showed 18–47 fold higher sensitivity than the direct injection method. The intra-day and inter-day precision (relative standard deviations) for a 1 ng/mL PAH mixture were below 5.1% and 7.6% (n = 5), respectively. This method was applied successfully to the analysis of tea products and dried food samples without interference peaks, and the recoveries of PAHs spiked into the tea samples were >70%. Low-molecular weight PAHs such as naphthalene and pyrene were detected in many foods, and carcinogenic benzo[a]pyrene, at relatively high concentrations, was also detected in some black tea samples. This method was also utilized to assess the release of PAHs from tea leaves into the liquor.  相似文献   

20.
A simple and sensitive method for the determination of polar pesticides in water and wine samples was developed by coupling automated in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS). To achieve optimum performance, the conditions for both the in-tube SPME and the ESI-MS detection were investigated. In-tube SPME conditions were optimized by selecting the appropriate extraction parameters, especially the stationary phases used for SPME. For the compounds studied, a custom-made polypyrrole (PPY)-coated capillary showed superior extraction efficiency as compared to several commercial capillaries tested, and therefore, it was selected for in-tube SPME. The influence of the ethanol content on the performance of in-tube SPME was also investigated. It was found that the amount of pesticides extracted decreased with the increase of ethanol content in the solutions. The ESI-MS detection conditions were optimized as follows: nebulizer gas, N2 (30 p.s.i.; 1 p.s.i.=6894.76 Pa); drying gas, N2 (10 l/min, 350 degrees C); capillary voltage, 4500 V; ionization mode, positive; mass scan range, 50-350 amu; fragmentor voltage, variable depending on the ions selected. Due to the high extraction efficiency of the PPY coating and the high sensitive mass detection, the detection limits (S/N = 3) of this method for the compounds studied are in the range of 0.01 to 1.2 ng/ml, which are more than one order of magnitude lower than those of the previous in-tube SPME-HPLC-UV method. A linear relationship was obtained for each analyte in the concentration range of 0.5 to 200 ng/ml with MS detection. This method was applied to the analysis of phenylurea and carbamate pesticides in spiked water and wine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号