首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.

Background  

Brain-derived neurotrophic factor (BDNF) is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC) transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression.  相似文献   

2.
《Physics letters. A》2004,330(5):313-321
Recently, experiments on mRNA abundance (gene expression) have revealed that gene expression shows a stationary organization described by a scale-free distribution. Here we propose a constructive approach to gene expression dynamics which restores the scale-free exponent and describes the intermediate state dynamics. This approach requires only one assumption: Markov property.  相似文献   

3.
IntroductionSeveral studies investigated the changes in diffusion of water molecules in skeletal muscle cells of lifestyle-related-disease patients who performed a hybrid training (HYBT) for six months. They reported that the apparent diffusion coefficient (ADC) and all diffusion eigenvalues (λ1, λ2, and λ3) increased after the HYBT, owing to the enlargement of the intramyocellular diffusion space (intracellular space) caused by the muscular hypertrophy.We assumed that the HYBT promoted metabolism of the whole skeletal muscle including lipids, which reduced the amount of intramyocellular lipid (IMCL), and led to a secondary enlargement of the diffusion space in the skeletal muscle cells. However, the IMCL has to be a diffusion limiting factor in order to verify this hypothesis. Until now, there is no report on whether IMCL is a diffusion limiting factor for water molecules.The objective of this study was to examine whether the IMCL is a diffusion limiting factor in skeletal muscle cells.Materials and methodsWe performed a three-dimensional quantification of the IMCL in triceps surae muscles of lifestyle-related-disease patients and healthy volunteers. In addition, we measured the ADC in the volume of interest (VOI), diffusion anisotropy (FA), and diffusion eigenvalues (λ1, λ2, and λ3), and evaluated the correlations between these diffusion parameters and IMCL.ResultsThe results showed that the amount of IMCL was positively and negatively correlated with the FA and λ3, respectively, in lifestyle-related-disease patients. In addition, there was a weak negative correlation between IMCL and ADC, λ1, and λ2. There was no correlation between the amount of IMCL and diffusion parameters of healthy volunteers.DiscussionAbove a certain amount, the IMCL correlates with the diffusion parameters. A higher amount of IMCL leads to smaller diffusion eigenvalues. This result suggested that IMCL possibility of influencing diffusion of water molecules in skeletal muscle cells. However, in order for the influence of IMCL to be reflected in the diffusion eigenvalues, it was needed large amount of IMCL existed, and we thought that the influence was smaller than the influence by the already reported cell membrane.  相似文献   

4.
5.
Hyperplasia and hypertrophy are two distinct processes of skeletal muscle growth regulated by four myogenic regulatory factors (MRFs, contains MyoD, Myf5, Mrf4 and myogenin (MyoG)) and myostatin (MSTN). In this study, characterization of muscle morphology and satellite cells in juvenile (1-year-old) and adult (2-year-old) Megalobrama amblycephala was described. Compared with 1-year-old M. amblycephala, the diameter scope of epaxial, horizontal septum and hypaxial muscle fibers including red and white muscle in 2-year-old fish exhibited broader with dramatic reduction in frequency distribution of <20 μm diameter, nevertheless observable increase in frequency distribution of >50 μm diameter. Intermyofibrillar (IM) nuclei were also found except numerous subsarcolemmal (SS) nuclei in 2-year-old fish, whereas only SS nuclei were observed in 1-year-old fish. Immunofluorescence results showed that more satellite cells existed in red muscle than white muscle in 1-year-old fish, rather than 2-year-old fish. Moreover, we observed predominant increase in the mRNA levels of MyoD, Myf5, Mrf4, and MSTN during muscle development of fish in 2-year-old fish except MyoG.  相似文献   

6.
The purpose of this study was to investigate practical, safe, easy-to-use, non-cytotoxic, and reliable parameters to apply to an ultrasound (US) naked gene therapy system. The ultrasound pressure at the point of cell exposure was measured using a calibrated hydrophone and the intensity calculated. An acoustic power meter calibrated using a hydrophone was used to measure the power of the transducer. Four cell types were exposed to US with different exposure times and intensities. Fluorescent microscopy, spectrophotometry, scanning electron microscope, laser scanning confocal microscopy, flow cytometry and histogram analysis were used to evaluate the results of the study. The plasmid of green fluorescent protein (GFP) served as the reporter gene. The energy accumulation E in US gene delivery for 90% cell survival was defined as the optimal parameters (E=3.56+/-0.06), and at 80% cell survival was defined as the damage threshold (E=59.67+/-3.54). US safely delivered GFP into S180 cells (35.1 kHz) at these optimal parameters without obvious damage or cytotoxity in vitro. Exposed cell function was proved normal in vivo. The transfection rate was 35.83+/-2.53% (n=6) in viable cells, corresponding to 90.17+/-1.47% (n=6) cell viability. The intensity of GFP expression showed a higher fluorescent peak in the group of adeno-associated virus GFP vector (AVV-GFP) than in the control group (P<0.001). The effect of US gene delivery and cell viability correlated as a fifth order polynomial with US intensity and exposure time. With optimal parameters, US can safely deliver naked a gene into a cell without damage to cell function. Both optimal uptake and expression of gene depend on the energy E at 90% cell survival. E can be applied as a control factor for bioeffects when combined with other parameters. Stable caviation results in optimal parameters for gene delivery and the transient caviation may cause cell damage, which will bring about a sharp rise of permeabilization. The results may be applied to the development of a novel clinical gene therapeutic system.  相似文献   

7.
《Ultrasonics》2005,43(2):69-77
The purpose of this study was to investigate practical, safe, easy-to-use, non-cytotoxic, and reliable parameters to apply to an ultrasound (US) naked gene therapy system. The ultrasound pressure at the point of cell exposure was measured using a calibrated hydrophone and the intensity calculated. An acoustic power meter calibrated using a hydrophone was used to measure the power of the transducer. Four cell types were exposed to US with different exposure times and intensities. Fluorescent microscopy, spectrophotometry, scanning electron microscope, laser scanning confocal microscopy, flow cytometry and histogram analysis were used to evaluate the results of the study. The plasmid of green fluorescent protein (GFP) served as the reporter gene. The energy accumulation E in US gene delivery for 90% cell survival was defined as the optimal parameters (E = 3.56 ± 0.06), and at 80% cell survival was defined as the damage threshold (E = 59.67 ± 3.54). US safely delivered GFP into S180 cells (35.1 kHz) at these optimal parameters without obvious damage or cytotoxity in vitro. Exposed cell function was proved normal in vivo. The transfection rate was 35.83 ± 2.53% (n = 6) in viable cells, corresponding to 90.17 ± 1.47% (n = 6) cell viability. The intensity of GFP expression showed a higher fluorescent peak in the group of adeno-associated virus GFP vector (AVV-GFP) than in the control group (P < 0.001). The effect of US gene delivery and cell viability correlated as a fifth order polynomial with US intensity and exposure time. With optimal parameters, US can safely deliver naked a gene into a cell without damage to cell function. Both optimal uptake and expression of gene depend on the energy E at 90% cell survival. E can be applied as a control factor for bioeffects when combined with other parameters. Stable caviation results in optimal parameters for gene delivery and the transient caviation may cause cell damage, which will bring about a sharp rise of permeabilization. The results may be applied to the development of a novel clinical gene therapeutic system.  相似文献   

8.
9.
Forward genetics in humans is beneficial in terms of diagnosis and treatment of genetic diseases, and discovery of gene functions. However, experimental mating is not possible among humans. In order to overcome this problem, I propose a novel experimental procedure to genetically identify human disease gene loci. To accomplish this, somatic cells from patients or their parents are reprogrammed to the pluripotent state, oogenesis is induced, the oocytes are parthenogenetically activated in the presence of cytochalasin, and embryonic stem cells are established from the parthenogenetic blastocysts. This protocol produces a set of diploid pluripotent stem cell clones having maternal and paternal chromosomes in different manners to each other. The genetic loci for the disease genes are determined through the conventional processes of positional cloning. Thus, taking advantage of the strategy proposed here, if the abnormality is reproducible using patient-derived pluripotent stem cells, a single carrier of the genetic mutations would be adequate to identify the disease gene loci.  相似文献   

10.
Recent experiments show that mRNAs and proteins can be localized both in prokaryotic and eukaryotic cells. To describe such situations, I present a 3D mean-field kinetic model aimed primarily at gene expression in prokaryotic cells, including the formation of mRNA, its translation into protein, and slow diffusion of these species. Under steady-state conditions, the mRNA and protein spatial distribution is described by simple exponential functions. The protein concentration near the gene transcribed into mRNA is shown to depend on the protein and mRNA diffusion coefficients and degradation rate constants.  相似文献   

11.
In 2000 Istrail suggested that calculating the partition function of non‐planar Ising models is an NP‐complete problem, implying that these problems are intractable and thus essentially unsolvable. In this note we discuss the validity of this suggestion and introduce the idea of gauging on an exact equation. We illustrate how this method works by applying it to two non‐planar Ising models, namely the 2D model with nearest and weak next nearest neighbor interactions and the anisotropic 3D model.  相似文献   

12.
Several studies have proposed the cell membrane as the main water diffusion restricting factor in the skeletal muscle cell. We sought to establish whether a particular form of exercise training (which is likely to affect only intracellular components) could affect water diffusion. The purpose of this study is to characterise prospectively the changes in diffusion tensor imaging (DTI) eigenvalues of thigh muscle resulting from hybrid training (HYBT) in patients with non-alcoholic fatty liver disease (NAFLD). Twenty-one NAFLD patients underwent HYBT for 30 minutes per day, twice a week for 6 months. Patients were scanned using DTI of the thigh pre- and post-HYBT. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), the three eigenvalues lambda 1 (λ1), λ2, λ3, and the maximal cross sectional area (CSA) were measured in bilateral thigh muscles: knee flexors (biceps femoris (BF), semitendinosus (ST), semimembranous (SM)) and knee extensors (medial vastus (MV), intermediate vastus (IV), lateral vastus (LV), and rectus femoris (RF)), and compared pre- and post-HYBT by paired t-test. Muscle strength of extensors (P < 0.01), but not flexors, increased significantly post-HYBT. For FA, ADC and eigenvalues, the overall picture was of increase. Some (P < 0.05 in λ2 and P < 0.01 in λ1) eigenvalues of flexors and all (λ1-λ3) eigenvalues of extensors increased significantly (P < 0.01) post-HYBT. HYBT increased all 3 eigenvalues. We suggest this might be caused by enlargement of muscle intracellular space.  相似文献   

13.

Background  

During the development of the central nervous system, oligodendrocytes generate large amounts of myelin, a multilayered insulating membrane that ensheathes axons, thereby allowing the fast conduction of the action potential and maintaining axonal integrity. Differentiation of oligodendrocytes to myelin-forming cells requires the downregulation of RhoA GTPase activity.  相似文献   

14.
Arterial spin labeling (ASL) perfusion measurements allow the follow-up of muscle perfusion with high temporal resolution during a stress test. Automated image processing is proposed to estimate perfusion maps from ASL images. It is based on two successive analyses: at first, automated rejection of the image pairs between which a large displacement is detected is performed, followed by factor analysis of the dynamic data and cluster analysis to classify pixels with large signal variation characteristic of vessels. Then, after masking these "vascular" pixels, factor analysis and cluster analysis are further applied to separate the different muscles between low or high perfusion increase, yielding a functional map of the leg. Data from 10 subjects (five normal volunteers and five elite sportsmen) had been analyzed. Resulting time perfusion curves from a region of interest (ROI) in active muscles show a good accordance whether extracted with automated processing or with manual processing. This method of functional segmentation allows automated suppression of vessels and fast visualization of muscles with high, medium or low perfusion, without any a priori knowledge.  相似文献   

15.
The authors propose a new approach for obtaining information about in-plane and out-of-plane displacements of an object tested using high-sensitivity grating interferometry. The interferences of each of the specimen grating diffraction orders with a reference beam are recorded separately. Computer addition and subtraction of the phase functions calculated from the interferograms give the in-plane and out-of-plane displacement values, respectively. The authors present their experimental work, and then compare their results with those obtained using a conventional grating interferometry approach.  相似文献   

16.
Remodeling of the extracellular matrix resulting from increased secretion of metalloproteinase enzymes is implicated in restenosis following balloon angioplasty. Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases play an essential role in both normal and pathological extracellular matrix degradation. Tissue inhibitor of matrix metalloproteinase-2 is the most extensively studied tissue inhibitor of metalloproteinases in myocardial tissue in animal models and clinical examples of cardiac disease; therefore it is selected for this study. Gene transfer of tissue inhibitor of matrix metalloproteinase-2 may have a therapeutic potential by inhibition of matrix metalloproteinase activity. We have used PEG-lated nanoparticles poly(St/PEG-EEM/DMAPM) which were synthesized previously in our laboratory. The nanoparticles, with an average size of 77.6 ± 2.05 nm with a zeta potential of +64. 4 ± 1.14 mV and 201.9 ± 1.83 nm with +54.2 ± 0.77 mV were used in the transfection studies. Zeta Potential values and size of polyplex were appropriate for an effective transfection. TIMP-2 expression was detected by western blotting. Increased protein level in smooth muscle cells according to non-transfected smooth muscle cells confirms the successful delivery and expression of the tissue inhibitor of matrix metalloproteinase-2 gene with the non-viral vector transfection approach.  相似文献   

17.
18.
Determination of the energy range is an important precondition of focus calibration using alignment procedure (FOCAL) test. A new method to determine the energy range of FOCAL off-lined is presented in this paper. Independent of the lithographic tool, the method is time-saving and effective. The influences of some process factors, e.g. resist thickness, post exposure bake (PEB) temperature, PEB time and development time, on the energy range of FOCAL are analyzed.  相似文献   

19.
20.
Gold (Au) nanocage@SiO2 nanoparticles are prepared by a novel approach. The silver (Ag) nanocube@SiO2 structure is synthetized firstly. Next, the method of etching a SiO2 shell by boiling water is adopted to change the penetration rate of AuCl4- through the SiO2 shell. AuCl4- can penetrate through silica shells of different thickness values to react with the Ag nanocube core by changing the incubation time. The surface plasma resonance (SPR) peak of synthetic Au nanocage@SiO2 can be easily tuned into the near-infrared region. Besides, CdTeS quantum dots (QDs) are successfully connected to the surface of Au nanocage@SiO2, which testifies that the incubation process does not change the property of silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号