首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of the PPh3-stabilized iridium trihydrido complex H3Ir(PPh3)3 with fullerene C60 under thermal and photochemical excitation was studied under anaerobic conditions. Heating (100 °C) or photolysis by the visible light of the H3Ir(PPh3)3-C60 650 nm, which are characteristic of the ·2-coordinated C60 in several fullerene-containing metal complexes. The kinetic behavior of the H3Ir(PPh3)3)-C60 system in benzonitrile was investigated using a Nd3+-YAG laser (λ=532 nm). The quenching rate constant determined from the dependence of the effective first-order quenching constant of C60(T) on the concentration of H3Ir(PPh3)3 is equal to 1.1·109 L mol−1 s−1. The quenching of C60(T) by the iridium hydridophosphine complex follows the reductive mechanism to form a C60 monoanion. The ESR signal with g=2.000 and ΔH=0.17 mT (at room temperature) and characteristic absorption bands in the near-IR region at 940, 1004, and 1076 nm support the formation of the C60 monoanion during the interaction of the triplet-excited C60 with H3Ir(PPh3)3. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2145–2148, December, 1997.  相似文献   

2.
The ultraviolet-visible absorption spectrum of C60(OH)18 in water showed an absorption band with λmax = 215 nm and other characteristic absorption bands of C60 are not observed. The singlet-singlet and triplet-triplet absorption bands are not observed in the 400–900 nm region. It has low reactivity with eaq and formed an absorption band with λmax = 580 nm. The hydroxyl radicals react with a bimolecular rate constant of 2.4×109 dm3 mol−1 s−1 and showed an absorption band at 540 nm.  相似文献   

3.
N-Methyl-2-(N-ethylcarbozole)-fulleropyrro lidine and N-methyl-2-(4′-N,N-diphenylaminophenyl)-fulleropyrrolidine were synthesized by 1,3-dipolar cycloaddition under microwave irradiation, which were characterized by MS, 1H NMR, IR and UV-Vis. Photoinduced intramolecular electron transfer process from C60 moiety to carbazole moiety has been studied by nanosecond laser flash photolysis. The charge-separated state C60 •−-Cz•+ was observed in the near-IR region with a lifetime of 0.28 μs. The electronic spectrum of the C60-TPA was studied by using ZINDO method on the basis of the optimized geometrics with B3LYP/6-31G* program. The results show that the calculated absorption was beyond 440nm, essentially consistent with the experimental value 433 nm. __________ Translated from Acta Chimica Sinica, 2005,63(17)(in Chinese)  相似文献   

4.
Ground state non-covalent interactions between a macrocyclic receptor, C-methylcalix[4]resorcinarene (1) and fullerenes (C60 and C70) have been studied in benzonitrile by an absorption spectrophotometric method. Absorption bands are located in the visible region due to the charge transfer (CT) transition between 1 and various electron acceptors (including fullerenes), namely, 2,3-dichloro-5,6-dicyano-p-benzoquinone, tetracyanoquinodimethane and p-chloranil. Utilizing the CT absorption bands, various important physicochemical parameters, including oscillator strength, resonance energy, transition dipole strength of all the acceptor-1 complexes and vertical ionization potential of 1 are determined. Job’s method of continuous variation reveals 1:1 stoichiometry between fullerenes and 1. The most fascinating feature of the present study is that 1 binds selectively to C70 compared to C60 as obtained from binding constant (K) data of C60-1 (KC60-1K_{\mathrm{C}60\mbox{-}\mathbf{1}}) and C70-1 (KC70-1K_{\mathrm{C}70\mbox{-}\mathbf{1}}) complexes, i.e., KC60-1=190K_{\mathrm{C}60\mbox{-}\mathbf{1}}=190 dm3⋅mol−1 and KC70-1=5,800K_{\mathrm{C}70\mbox{-}\mathbf{1}}=5{,}800 dm3⋅mol−1 and selectivity (KC70-1 /KC60-1 ) ∼30. Quantum chemical calculations based on hybrid density functional theory estimate the enthalpies of formation of the fullerene-1 complexes in vacuo and provide very good support for selectivity in the K values of the C70 and C60 complexes of 1. The exchange and correlation energies have been calculated using a hybrid DFT functional method. We have opted to use the hybrid DFT functional over the Hartree-Fock method, as it can account for correlation effects also. Molecular electrostatic potential map calculations give a clear picture on the electronic structures of the fullerene-1 complexes.  相似文献   

5.
Radical-ion salts bis(biphenyl)chromium(i) 1,4-di(2-cyanoisopropyl)-1,4-dihydrofulleride [(Ph2)2Cr][1,4-(CMe2CN)2C60]−· and bis(biphenyl)chromium(i) 1-(2-cyanoisopropyl)-1,2-dihydrofulleride [(Ph2)2Cr][1,2-(CMe2CN)(H)C60]−·, the salt bis(biphenyl)chromium(i) (2-cyanoisopropyl)fulleride [(Ph2)2Cr][(CMe2CN)C60], and neutral 1-(2-cyanoisopropyl)-1,2-dihydrofullerene 1,2-(CMe2CN)(H)C60 have been synthesized for the first time. The compounds [(Ph2)2Cr][1,4-(CMe2CN)2C60]−· and [(Ph2)2Cr][1,2-(CMe2CN)(H)C60]−· decompose in THF to form [(Ph2)2Cr][(CMe2CN)C60], whose protonation affords 1,2-(CMe2CN)(H)C60. 1,4-Di(2-cyanoisopropyl)-1,4-dihydrofullerene 1,4-(CMe2CN)2C60 and 1,2-(CMe2CN)(H)C60 are stable in vacuo up to 513 K. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1935–1939, September, 2008.  相似文献   

6.
Axial coordination of the pyrrolidine nitrogen atom in cis-1,3-di(2-pyridyl)[60]fullereno[1,2-c]pyrrolidine to zinc meso-tetraphenylporphyrinate in cyclohexane gives rise to a donor-acceptor complex. The formation constant of the 1: 1 porphyrin—fullerenopyrrolidine complex was determined by spectrophotometric and fluorescence titration. The values of the constant estimated by spectrophotometric and fluorescence methods are 1.2·104 and 9.7·103 L mol−1, respectively. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2265–2269, October, 2005.  相似文献   

7.
Ground state non-covalent interactions between a newly designed macrocyclic 1,3,5-trihomo calix[6]arene receptor, designated as 1, and the C60 and C70 fullerenes have been studied in toluene solutions. It was observed that the absorbances of both C60 and C70 solutions increased upon the addition of increasing concentrations of compound 1. Job’s method of continuous variation established 1:1 stoichiometry for these fullerene-1 complexes. The binding constant (K) data reveal that compound 1 binds to C70 more strongly compared to C60, i.e., KC60-1 = 230 dm3·mol-1K_{C60\mbox{-}\boldsymbol{1}} = 230~\mathrm{dm}^{3}{\cdot}\mathrm{mol}^{-1} and KC70-1 = 517 dm3·mol-1K_{C70\mbox{-}\boldsymbol{1}}= 517~\mathrm{dm}^{3}{\cdot}\mathrm{mol}^{-1}. Proton NMR analysis provides very good support for strong binding between C70 and 1. Estimations of the solvent reorganization energy (R S ) suggest that the C70-1 complex is stabilized more than the corresponding C60-1 complex, with RS(C60-1) = -1.970 eVR_{S(C60\mbox{-}\boldsymbol{1})} = -1.970~\mathrm{eV} and RS(C70-1) = -2.300 eVR_{S(C70\mbox{-}\boldsymbol{1})}= -2.300~\mathrm{eV}. Molecular mechanics force field method calculations established that the binding pattern of C70 towards 1 occurs in the side-on rather than end-on orientation, and that the C70-1 complex gains 5.23 kJ⋅mol−1 of extra stabilization energy with this side-on geometrical arrangement.  相似文献   

8.
2-(5-Benzoacridine)ethyl-p-toluenesulfonate (BAETS), a dual-sensitive probe, was reacted with bile acids in the presence of K2CO3 catalyst in dimethyl sulfoxide (DMSO) solvent to give BAETS–bile acid derivatives. Derivatives exhibited intense fluorescence (FL) with an excitation maximum at λ ex 270 nm and an emission maximum at λ em 510 nm. MS analysis using APCI-MS indicated that derivatives had excellent APCI-MS ionizability with percentage ionization δ values changing from 0 to 88.83% in aqueous acetonitrile and from 0 to 89.15% in aqueous methanol. The collision induced dissociation spectra of m/z [M + H]+ contained specific fragment ions at m/z [M + H−H2O]+, [M + H−2H2O]+, [M + H−3H2O]+, 347.3, and 290.1. Repeatability was good for LC separation of BAETS–bile acid derivatives with aqueous acetonitrile as mobile phase. The relative standard deviations (RSDs) of retention time and peak area at 6.6 nmol mL−1 levels with fluorescence detection (FL) were from 0.045 to 0.072% and from 2.16 to 2.73%, respectively. Excellent linear responses were observed, with regression coefficients >0.9995. The FL detection limits (S/N = 3) were in the range of 18.0–36.1 fmol. The online APCI-MS detection limits are in the range of 500–790 fmol (at a signal-to-noise ratio of 3).  相似文献   

9.
Complexes [Pd(bt)(4,4′-bpy)OOCCH3], [Pd(bt)NO3]2(m-4,4′-bpy), [Pd(bt)(m-4,4′-bpy)]4(NO3)4 (bt is deprotonated form of 2-phenylbenzothiazole, bpy is 4,4′-bipyridyl) are prepared and characterized by 1H NMR, electron absorption and emission spectroscopy, as well as by voltammetry. The upfield shift of the signal of proton in the ortho-position to the donor carbon atom of the cyclopalladated ligand in the complexes [(Δδ = −(1.1–1.5) ppm] is assigned to the anisotropic effect of the ring current of the pyridine rings of the 4,4′-bipyridyl moiety, which are orthogonal to the coordination plane. Characteristic longwave absorption bands λ = (387±4) nm and the low-temperature phosphorescence bands λ = (512±3) nm in the complexes are assigned to the chromophore {Pd(bt)} metal complex fragment. The reduction waves in the complexes [E 1/2 = −(1.54±0.04) and E p = −(1.83±0.03) V] are assigned to the ligand-centered processes of the successive electron transfer to the π* orbitals localized predominantly on the coordinated pyridine components of the 4,4′-bipyridyl moiety.  相似文献   

10.
In acidic aqueous solutions, the protonation of gluconate is coupled with the lactonization of gluconic acid. With a decrease of pC H, two lactones (δ- and γ-) are sequentially formed. The δ-lactone forms more readily than the γ-lactone. In 0.1 mol⋅L−1 gluconate solutions, if pC H>2.5 then only the δ-lactone is generated. When the pC H is decreased below 2.0, formation of the γ-lactone is observed although the δ-lactone still predominates. In solutions with I=0.1 mol⋅L−1 NaClO4 and room temperature, the deprotonation constant of the carboxylic group was determined to be log 10 K a=3.30±0.02 using the NMR technique, and the δ-lactonization constant obtained by batch potentiometric titrations was log 10 K L=−(0.54±0.04). Using ESI-MS, the rate constants for the δ-lactonization and the reverse hydrolysis reaction at pC H≈5.0 were estimated to be k 1=3.2×10−5 s−1 and k −1=1.1×10−4 s−1, respectively.  相似文献   

11.
The radiation of fullerene molecules from the intersection area of the C60 beam with an electron beam with an energy of 27≤E e /eV≤100 was studied experimentally under conditions of a single collision. It was found that ionized C60 +* molecules make the main contribution to the radiation. The radiation intensity and the temperature of C60 +* as functions of the energyE e were measured. The kinetics of the radiation cooling of C60 +* was studied and the rate of the radiation loss of the ion energy (5.5·105 eV s−1) was determined at a temperature of 3150 K. For the heat model of radiation at the wavelength λ=540 nm, this corresponds to the emissivity ε=1.1·10−2. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 273–276, February, 2000.  相似文献   

12.
Oxidation of 3-(4-methoxyphenoxy)-1,2-propanediol (MPPD) by bis(hydrogenperiodato) argentate(III) complex anion, [Ag(HIO6)2]5− has been studied in aqueous alkaline medium by use of conventional spectrophotometry. The major oxidation product of MPPD has been identified as 3-(4-methoxyphenoxy)-2-ketone-1-propanol by mass spectrometry. The reaction shows overall second-order kinetics, being first-order in both [Ag(III)] and [MPPD]. The effects of [OH] and periodate concentration on the observed second-order rate constants k′ have been analyzed, and accordingly an empirical expression has been deduced:
where [IO4 ]tot denotes the total concentration of periodate and k a = (0.19 ± 0.04) M−1 s−1, k b = (10.5 ± 0.3) M−2 s−1, and K 1 = (5.0 ± 0.8) × 10−4 M at 25.0 °C and ionic strength of 0.30 M. Activation parameters associated with k a and k b have been calculated. A mechanism is proposed, involving two pre-equilibria, leading to formation of a periodato–Ag(III)–MPPD complex. In the subsequent rate-determining steps, this complex undergoes inner-sphere electron-transfer from the coordinated MPPD molecule to the metal center by two paths: one path is independent of OH, while the other is facilitated by a hydroxide ion.  相似文献   

13.
Fullerenyl radicals (FR) RC60 · and chemiluminescence (CL) are generated in the presence of O2 in C60—R3Al (R = Et, Bui) solutions in toluene (T = 298 K). The FR are formed due to the addition of the R· radical, which is an intermediate of R3Al autooxidation, to C60. Mass spectroscopy and HPLC were used to identify EtnC60Hm (n, m = 1–6), EtpC60 (p = 2–6), and dimer EtC60C60Et as stable products of FR transformations. As found by ESR, the EtC60 · radical (g = 2.0037) is also generated by photolysis of solutions obtained after interaction in the (C60— R3Al)—O2 system. In the presence of dioxygen, the FR is not oxidized but yields complexes with O2, which appear as broadening of the ESR signals. Chemiluminescence arising in the (C60—R3Al)—O2 system is much brighter (I max = 1.86·108 photon s−1 mL−1) than the known background CL (I max = 6.0·106 photon s−1 mL−1) for the autooxidation of R3Al and is localized in a longer-wavelength spectral region (λmax = 617 and 664 nm). This CL is generated as a result of energy transfer from the primary emitter 3CH3CHO* to the products of FR transformation: RnC60Hm, RpC60, and EtC60C60Et. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 205–213, February, 2007.  相似文献   

14.
The kinetics of the formation and decay of photoexcited radical ion pairs of donoracceptor charge-transfer complexes between C60 andN,N-diethylaniline (DEA) in chlorobenzene was studied by picosecond laser-induced diffraction gratings. It was established that the anisotropy of polarization of the diffraction signal decreases as the concentration of DEA increases. The radical ion states of the photoexcited C60 ...DEA+ complex have zero anisotropy. This effect is likely due to the isotropic intracomplex transfer of an electron from the local excited state to the radical ion state. The rate constant of quenching of the singlet excited C60 byN,N-diethylaniline (1.4·1010 L mol−1 s−1) and the lifetimes of the solventseparated C60 ...DEA+ and tight [C60 ...DEA+] (95±7 and 31±4 ps, respectively) radical ion pairs were measured. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1605–1610, September, 1997.  相似文献   

15.
The triazenide, 1-[(2-carboxyethyl)benzene]-3-[2-pyridine]triazene (HL), has been synthesized. In the presence of Et3N, the reaction of HL with Cu(OAc)2·H2O or CuCl2·2H2O gives the tetranuclear copper(II) complexes {Cu4(L)22-OH)2(OAc)4} 1 and {Cu4L44-O)Cl2} 2, respectively. The X-ray crystal structures of both complexes have been obtained. Magnetic studies indicate significant antiferromagnetic coupling between the copper(II) centers for both complexes, with coupling constants (J) of −493.4 cm−1 for 1 and −165 cm−1 for 2.  相似文献   

16.
Summary.  Ab initio calculations at the HF/6-31G* level of theory for geometry optimization and the MP2/6-31G*//HF/6-31G* level for a single point total energy calculation are reported for (Z,Z)-, (E,Z)-, and (E,E)-cycloocta-1,4-dienes. The C 2-symmetric twist-boat conformation of (Z,Z)-cycloocta-1,4-diene was calculated to be by 3.6 kJ·mol−1 more stable than the C S-symmetric boat-chair form; the calculated energy barrier for ring inversion of the twist-boat conformation via the C S-symmetric boat-boat geometry is 19.1 kJ·mol−1. Interconversion between twist-boat and boat-chair conformations takes place via a half-chair (C 1) transition state which is 43.5 kJ·mol−1 above the twist-boat form. The unsymmetrical twist-boat-chair conformation of (E,Z)-cycloocta-1,4-diene was calculated to be by 18.7 kJ·mol−1 more stable than the unsymmetrical boat-chair form. The calculated energy barrier for the interconversion of twist-boat-chair and boat-chair is 69.5 kJ·mol−1, whereas the barrier for swiveling of the trans-double bond through the bridge is 172.6 kJ·mol−1. The C S symmetric crown conformation of the parallel family of (E,E)-cycloocta-1,4-diene was calculated to be by 16.5 kJ·mol−1 more stable than the C S-symmetric boat-chair form. Interconversion of crown and boat-chair takes place via a chair (C S) transition state which is 37.2 kJ·mol−1 above the crown conformation. The axial- symmetrical twist geometry of the crossed family of (E,E)-cycloocta-1,4-diene is 5.9 kJ·mol−1 less stable than the crown conformation. Corresponding author. E-mail: isayavar@yahoo.com Received March 25, 2002; accepted April 3, 2002  相似文献   

17.
The experimental data on the mechanism of hydride dispersion of intermetallic compounds of the LaNi5 type and the crystal structures of hydride phases based on these compounds were analyzed. A new approach was suggested and substantiated, which allows one to consider hydride dispersion as a result of a redox process associated with the formation of Hδ− hydride ions at concentrations of hydrogen in the solid hydrideC H>-C H cr. The value ofC H cr is determined by the redox potential of the reaction Hδ++Mδ−⇌Hδ′−+Mδ′+. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 214–217, February, 1998.  相似文献   

18.
19.
The stoichiometries, kinetics and mechanism of the reduction of tetraoxoiodate(VII) ion, IO4 to the corresponding trioxoiodate(V) ion, IO3 by n-(2-hydroxylethyl)ethylenediaminetriacetatocobaltate(II) ion, [CoHEDTAOH2] have been studied in aqueous media at 28 °C, I = 0.50 mol dm−3 (NaClO4) and [H+] = 7.0 × 10−3 mol dm−3. The reaction is first order in [Oxidant] and [Reductant], and the rate is inversely dependent on H+ concentration in the range 5.00 × 10−3 ≤ H+≤ 20.00 × 10−3 mol dm−3 studied. A plot of acid rate constant versus [H+]−1 was linear with intercept. The rate law for the reaction is:
- \frac[ \textCoHEDTAOH2 - ]\textdt = ( a + b[ \textH + ] - 1 )[ \textCoHEDTAOH2 - ][ \textIO4 - ] - {\frac{{\left[ {{\text{CoHEDTAOH}}_{2}^{ - } } \right]}}{{{\text{d}}t}}} = \left( {a + b\left[ {{\text{H}}^{ + } } \right]^{ - 1} } \right)\left[ {{\text{CoHEDTAOH}}_{2}^{ - } } \right]\left[ {{\text{IO}}_{4}^{ - } } \right]  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号