首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
采用爆轰合成的方法,以Ce(NO3)3·6H2O为原料,制得了CeO2纳米粒子. 炸药采用黑索金粉,添加剂为CO(NH2)2,NaNO2. 爆轰产物经水洗,烘干后,利用X射线衍射仪器和高分辨率透射电镜对实验结果进行了分析. XRD结果表明,该法所得到的CeO2为立方晶系,颗粒平均粒度为33 nm. TEM图像显示其颗粒呈球形,颗粒大小主要分布在20~40 nm之间,颗粒具有较好的分散性. 球形纳米CeO2颗粒的形成原因有两点:(1) 由于爆轰过程的快速性和急剧冷却的特点,CeO2晶粒来不及择优生长; (2) 产物Na2CO3的熔点较低,爆轰时呈熔融状态包覆在CeO2晶核的周围,阻隔了CeO2晶粒的团聚生长.  相似文献   

2.
利用Cr_2O_3-LaCoO_3-Pt纳米材料催化发光测定大气中的氨分子   总被引:9,自引:2,他引:9  
饶志明  施进军  张新荣 《化学学报》2002,60(9):1668-1671
研究了氨分子在Cr_2O_3纳米粒子(粒径50 ~ 80 nm)表面的化学发光行为, 发现这种纳米材料对氨分子具有较强的选择性。进一步的研究表明,在掺杂了 LaCoO_3纳米粒子(粒径20 nm)和Pt纳米粒子(粒径≤10 nm)后,化学发光强度 增强了近25倍。在最佳反应条件下,化学发光强度与氨分子的浓度在15.0 * 10~(- 6) ~ 750 * 10~(-6)内呈良好的线性关系(r = 0.995),检出限为4.0 * 10~(- 6)。  相似文献   

3.
共轭聚合物纳米粒子(CPNs)因其高荧光亮度、低毒性、表面易修饰的特性,近年来在生物材料和生物医药领域备受关注。本论文中我们设计、合成了一种新的pH 值响应共轭聚合物(PFPA),并通过纳米沉淀方法制备了其纳米粒子。动态光散射实验表明PFPA纳米粒子在水中分散性较好,其粒径约为8 nm。 PFPA纳米粒子的最大吸收峰为379 nm,其摩尔吸光系数为2.1×106 L·mol -1·cm -1;另外该纳米粒子的荧光最大发射峰为422 nm,其荧光量子产率为35%。PFPA纳米粒子在汞灯(100瓦)照射下表现出较好的光稳定性,另外MTT实验表明其具有较低的细胞毒性。该纳米粒子具有pH响应的光学特性,并可以用于活细胞成像。PFPA纳米粒子在癌症诊断、药物与基因传递等方面具有潜在的应用价值。  相似文献   

4.
聚丙烯酰胺存在下微波高压合成银纳米粒子及其光谱特性   总被引:4,自引:0,他引:4  
覃爱苗  蒋治良  刘庆业  廖雷  蒋毅民 《分析化学》2002,30(10):1254-1256
以聚丙烯酰胺为还原剂和稳定剂 ,采用微波高压液相合成法制备了黄色银纳米粒子。用吸收光谱和共振散射光谱研究了其制备条件的影响。在 4 2 1.6nm处产生最大吸收峰 ,在 4 70nm处产生一个最强共振散射峰。实验表明 :该法制备的银纳米粒子粒径均匀 ,平均粒径为 6 6nm ,其稳定性和分散性较好 ,合成方法简便、快捷。  相似文献   

5.
本工作以纳米金刚石为探针,依赖拉曼成像技术,成功实现了对细菌体系生命活动的观察。实验中将抗菌肽死亡素负载于100nm的金刚石上,利用纳米金刚石在1332cm-1处的特征拉曼信号为标记,通过共聚焦拉曼成像技术可视化了纳米金刚石-死亡素复合物与枯草芽孢杆菌间的相互作用过程。同时,采用扫描电子显微镜观察手段验证了上述拉曼成像方法的有效性。此外,抗菌实验验证了纳米金刚石-死亡素复合物对枯草芽孢杆菌有达到45%的明显杀灭效果,表明纳米金刚石探针的引入不会影响死亡素的抗菌性能。本工作证实了纳米金刚石拉曼生物探针用于观察抗菌过程的可行性,为其在生物成像领域中的应用提供了重要依据。  相似文献   

6.
用真空蒸发沉积的方法制备了纳米稀土(La、Nd、Sm)粒子 BaO介质薄膜.研究表明薄膜的光电发射光谱响应阈值受纳米稀土粒子形状和大小的影响,球形纳米稀土(Sm)粒子 BaO介质薄膜的光谱响应阈值波长为720 nm,条状纳米稀土(La和Nd)粒子 BaO介质薄膜阈值波长分别为650 nm和660 nm.研究得到纳米稀土粒子 介质薄膜等效界面位垒高度在1.7~2.0 eV之间.由于纳米稀土粒子与BaO介质各自逸出功不同,当构成薄膜后使得纳米粒子周围的空间电荷分布发生变化,纳米粒子周围的能带发生弯曲.  相似文献   

7.
用真空蒸发沉积的方法制备了纳米稀土(La、Nd、Sm)粒子-BaO介质薄膜.研究表明薄膜的光电发射光谱响应阈值受纳米稀土粒子形状和大小的影响,球形纳米稀土(Sm)粒子-BaO介质薄膜的光谱响应阈值波长为720nm,条状纳米稀土(La和Nd)粒子-BaO介质薄膜阈值波长分别为650nm和660nm.研究得到纳米稀土粒子-介质薄膜等效界面位垒高度在1.7~2.0eV之间.由于纳米稀土粒子与BaO介质各自逸出功不同,当构成薄膜后使得纳米粒子周围的空间电荷分布发生变化,纳米粒子周围的能带发生弯曲.  相似文献   

8.
先以廉价的无机铁盐为主要原料,采用沉淀法和溶胶凝胶法制备纳米氧化铁粒子,由此得到粒径大小在10~20nm,20~40nm和40~60nm的氧化铁,在此基础上,以纳米氧化铁为前体,在氨气气氛下由程序升温反应法制备纳米氮化铁.研究发现,纳米氧化铁经程序升温反应氮化后,可以制备出纳米尺度的氮化铁.不同大小的氧化铁纳米粒子氮化后尺寸存在明显的差异,在一定范围内,小粒径的纳米氧化铁氮化后更容易长大;对于大小相近的γ相与α相纳米氧化铁粒子,γ氧化铁纳米粒子氮化后尺寸增大更为显著.制得的氮化铁的形貌与其氧化铁前体保持一致.  相似文献   

9.
用水溶液中合成的量子点作为生物荧光标记物的研究   总被引:45,自引:0,他引:45  
以巯基丙酸(HS-CH2CH2COOH)为稳定剂,在水溶液中合成了具有窄而对称(FWHM=40nm)的荧光发射带且尺寸为3nm的CdTe半导体纳米粒子,并用此纳米粒子成功地标记了生物分子胰蛋白酶.与单独的CdTe纳米粒子的溶液相比较,CdTe-胰蛋白酶溶液的吸收光谱在400~600nm范围内较为平坦,其发射光谱蓝移8nm,但发射峰的半峰宽不变.实验证明,CdTe-胰蛋白酶溶液吸收和发射光谱的变化是由CdTe纳米粒子与胰蛋白酶之间的结合反应引起的,而不是由空气中的O2所引起的,加热可促进CdTe纳米粒子与胰蛋白酶之间的结合反应.  相似文献   

10.
利用一种简单共沉淀的方法,通过调变合成温度(0~80 ℃)成功地合成了一系列Ag3VO4样品,其粒子尺寸在100 nm~5 μm间. 通过在合成体系中添加聚乙二醇4000, Ag3VO4粒子尺寸可进一步降低至50~100 nm. 可见光下降解罗丹明B的实验结果表明, Ag3VO4样品特别是纳米尺寸的样品,显示出比当前广泛使用的P25更高的催化活性. Ag3VO4样品循环使用4次之后其光催化活性并没有明显降低,证明Ag3VO4是一种稳定有效的可见光催化剂.  相似文献   

11.
以Au粒子(55nm)为核,抗坏血酸为还原剂,将不同量的Pt沉积在Au核上,制得可控壳层厚度(0.3~6nm)的Pt包Au纳米粒子(Aucore@Ptshell).用紫外-可见吸收光谱、扫描电镜(SEM)、透射电镜(TEM)和电化学循环伏安法等观测Aucore@Ptshell纳米粒子的表面形貌、结构和性能.另以SCN-为探针,考察了Pt壳厚度对Aucore@Ptshell纳米粒子SERS信号的影响.结果表明,SCN-离子的SERS信号强度随Pt壳厚度的增加呈指数衰减,当Pt壳厚度为1.4nm时,Aucore@Ptshel纳米粒子表现出铂良好的电化学性能,又具有较强的SERS活性.  相似文献   

12.
通过光诱导生长制备了三角形和圆盘形银纳米粒子, 并采用飞秒Z-scan技术考察了这2种形貌的银纳米粒子在800 nm光波长下的非线性光学特性. 在基态等离子漂白和自由载流子吸收等效应的作用下, 粒径为75 nm的三角形银纳米粒子的非线性透过率随激发光强的增加而呈现由饱和向反饱和非线性吸收过渡的现象; 粒径为35 nm的圆盘形银纳米粒子仅表现出反饱和吸收现象. 实验结果表明, 银纳米粒子非线性吸收过程受粒子形态调控.  相似文献   

13.
化学沉淀法制备羟基磷灰石纳米粒子   总被引:10,自引:0,他引:10  
郭广生  王颖  王志华  郭洪猷 《化学通报》2004,67(11):830-834
采用化学沉淀法以 Ca(NO3 ) 2 · 5 H2 O和 (NH4) 2 HPO4为主要原料 ,制备了短棒状或针状的羟基磷灰石纳米粒子 (HA) ,考察了各反应参数对纳米粒子性能的影响 ,并由透射电镜、X射线晶体衍射、电子衍射、红外、比表面积等手段对其进行表征。实验结果表明 ,所制备的 HA粒子粒径长约 30~5 0 nm,直径约 10~ 15 nm;通过严格控制各反应参数可以基本上实现纳米羟基磷灰石粒子粒径、形态等部分性质的可控制备  相似文献   

14.
杨传钰  郭敏  张艳君  王新东  张梅  王习东 《化学学报》2007,65(15):1427-1431
采用恒电位电沉积方法, 在未经修饰的ITO导电玻璃基底上通过控制实验条件制备出不同形貌的纳米ZnO结构, 而在经过ZnO纳米粒子膜修饰后的ITO导电玻璃基底上, 制备出透明、高取向、粒径小于30 nm的ZnO纳米棒阵列. 用扫描电子显微镜(SEM)、X射线衍射(XRD)以及透射光谱对制备出的ZnO纳米棒阵列的结构、形貌和透明性进行了表征. 测试结果表明, ZnO纳米棒阵列的平均直径为21 nm, 粒径分布窄, 约18~25 nm, 择优生长取向为[001]方向, 垂直于基底生长. 当入射光波长大于400 nm时, ZnO纳米棒阵列的透光率大于95%.  相似文献   

15.
强磁场碳黑催化法制备纳米新金刚石粉   总被引:1,自引:0,他引:1  
在直流恒稳强磁场(10T)作用下,以纳米铁为催化剂,碳黑为碳源,在常压和1100℃下保温100min成功地制备出了类金刚石和新金刚石,并用XRD,TEM和Raman对制备的样品粉末进行表征.结果表明,样品粉末是由纳米类金刚石粉和石墨包覆新金刚石纳米颗粒组成,纳米类金刚石粉的大小为20nm,石墨包覆新金刚石的大小为100nm.  相似文献   

16.
基于金纳米粒子自组装的分光光度法测定半胱氨酸   总被引:2,自引:0,他引:2  
李正平  段新瑞  白玉惠 《分析化学》2006,34(8):1149-1152
在pH 4.56的B ritton-Rob inson(B-R)缓冲溶液中,半胱氨酸的SH和NH3 分别与金纳米粒子表面进行共价结合和静电作用,导致金纳米粒子的长距离自组装,形成网状超分子结构,并使金纳米粒子的最大吸收波长从520 nm红移到660 nm。本实验对半胱氨酸引导的金纳米粒子自组装的作用机制进行了研究,建立了操作简便、高灵敏度测定半胱氨酸的分析方法。其线性范围为0.01~0.20 mg/L;检出限为2.8μg/L(3,σ2.3×10-8mol/L)。在实验条件下,其它常见的氨基酸和谷胱甘肽均不干扰测定。  相似文献   

17.
黄色硫化镉纳米粒子的共振瑞利散射光谱研究   总被引:6,自引:0,他引:6  
在高分子聚乙烯醇存在下 ,Cd2 + 与S2 - 反应生成黄色CdS纳米微粒。当CdS浓度小于 5× 1 0 - 4 mol L时 ,它在 4 70nm产生一个最强RRS峰 ,这是由低浓度较小粒径黄色CdS纳米微粒或黄色CdS分子与光源相互作用的结果 ;当CdS浓度大于 7.5× 1 0 - 4 mol L时 ,在 5 2 0nm产生一个最强的特征RRS峰。黄色CdS纳米微粒体系在可见光区无吸收峰。当CdS纳米微粒的浓度在 7.5× 1 0 - 4 ~ 2 .0× 1 0 - 3mol L范围内 ,所得纳米粒子的粒径为 4 3nm。实验表明 :光源发射强度分布和CdS纳米粒子的形成是产生其RRS光谱峰的主要原因  相似文献   

18.
采用柠檬酸钠还原法制备了水相金纳米粒子, 通过巯基的自组装, 成功获得了巯基十一烷醇(MUN)单分子层保护的金纳米粒子. 用紫外可见光谱、透射电子显微镜、激光散射粒度分析、同步散射光谱和发射光谱等手段对组装前后的金纳米粒子的性质进行了研究. 结果表明: 制备的金纳米粒子最大吸收波长518 nm, 形状规则, 粒度均匀, 平均粒径为14.6 nm, 每个粒子含有约9.64×104原子; 组装之后的金纳米粒子表面等离子体共振吸收峰红移17.0 nm, 平均粒径增大为20.2 nm, 组装层的平均厚度2.8 nm, 与MUN分子长度相当, 结合量实验证明每一个金纳米粒子可以结合约7.52×103个MUN, 表面覆盖率为83.6%, 粒子分散均匀, 稳定性增强可长期保存; 同步散射光谱变化和发射光谱中分频、差频和倍频峰的存在证明, 金纳米粒子组装前后均具有非线性光学特性.  相似文献   

19.
超声雾化反应法制备CeO2纳米粉体   总被引:4,自引:0,他引:4  
以硝酸铈和碳酸氢铵为原料,采用超声雾化反应法制备了纳米CeO2粉. 用红外光谱(IR)、 X射线衍射分析(XRD)和透射电子显微镜(TEM)技术,对制得的纳米CeO2纳米粒子的物相结构、形貌特征、成分等进行了表征. 结果表明,双液超声雾化法能制备出颗粒分散性好,粒度分布均匀的纳米CeO2粒子,所得CeO2粒子为萤石型结构,粒径约为3~5 nm左右. 初步探讨了用超声雾化反应法制备纳米粉的机制,认为CeO2纳米粒子的成核和长大受到液滴大小的限制,是一个液相的微区反应过程,正是液滴的微小体积保证了更小纳米粒子的形成.  相似文献   

20.
简要综述了使用一价金复合物AuCl(油胺)作为前驱物合成形貌可控的金纳米结构的相关工作. 通过改变有机溶剂、添加异质金属纳米粒子及控制反应温度等手段, 成功合成出球形的金纳米粒子(平均直径12.7 nm)、超细金纳米线(平均直径1.8 nm)及超细金纳米棒(平均直径2 nm); 并通过牺牲磁性纳米粒子模板的方法合成出枝状金纳米结构. 除了对合成方法和过程的介绍, 还简要讨论了每种纳米结构的形成机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号