首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We elaborate on recent results on the transport of interacting particles for both single-species and binary mixtures subject to an external driving on a ratchetlike asymmetric substrate. Moreover, we also briefly review motion control without any spatial asymmetric potential (i.e., no ratchet). Our results are obtained using an analytical approach based on a nonlinear Fokker-Planck equation as well as via numerical simulations. By increasing the particle density, the net dc ratchet current in our alternating (ac)-driven systems can either increase or decrease depending on the temperature, the drive amplitude, and the nature of the inter-particle interactions. This provides an effective control of particle motion by just changing the particle density. At low temperatures, attracting particles can condense at some potential minima, thus breaking the discrete translational symmetry of the substrate. Depending on the drive amplitude, an agglomeration or condensation results either in a drop to zero or in a saturation of the net particle velocity at densities above the condensation density-the latter case producing a very efficient rectification mechanism. For binary mixtures we find three ways of controlling the particle motion of one (passive) B species by means of another (active) A species: (i) Dragging the target particles B by driving the auxiliary particles A, (ii) rectifying the motion of the B particles on the asymmetric potential created by the A-B interactions, and (iii) dynamically modifying (pulsating) this potential by controlling the motion of the A particles. This allows to easily control the magnitude and direction of the velocity of the target particles by changing either the frequency, phase and/or amplitude of the applied ac drive(s).  相似文献   

2.
We introduce a dynamical model of coupled directed percolation systems with two particle species. The two species A and B are coupled asymmetrically in that A particles branch B particles, whereas B particles prey on A particles. This model may describe epidemic spreading controlled by reactive immunization agents. We study nonequilibrium phase transitions with attention focused on the multicritical point where both species undergo the absorbing phase transition simultaneously. In one dimension, we find that the inhibitory coupling from B to A is irrelevant and the model belongs to the unidirectionally coupled directed percolation class. On the contrary, a mean-field analysis predicts that the inhibitory coupling is relevant and a new universality appears with a variable dynamic exponent. Numerical simulations on small-world networks confirm our predictions.  相似文献   

3.
A study of heavy secondary particles generated by 19.8 GeV/c proton interactions is presented. Energy spectra, angular distribution and relative abundances of these particles are determined. Indications are found for a forward motion of the target nucleus and for multiple collision in heavy nuclei.  相似文献   

4.
The small dim moving target usually submerged in strong noise, and its motion observability is debased by numerous false alarms for low signal-to-noise ratio (SNR). A target tracking algorithm based on particle filter and discriminative sparse representation is proposed in this paper to cope with the uncertainty of dim moving target tracking. The weight of every particle is the crucial factor to ensuring the accuracy of dim target tracking for particle filter (PF) that can achieve excellent performance even under the situation of non-linear and non-Gaussian motion. In discriminative over-complete dictionary constructed according to image sequence, the target dictionary describes target signal and the background dictionary embeds background clutter. The difference between target particle and background particle is enhanced to a great extent, and the weight of every particle is then measured by means of the residual after reconstruction using the prescribed number of target atoms and their corresponding coefficients. The movement state of dim moving target is then estimated and finally tracked by these weighted particles. Meanwhile, the subspace of over-complete dictionary is updated online by the stochastic estimation algorithm. Some experiments are induced and the experimental results show the proposed algorithm could improve the performance of moving target tracking by enhancing the consistency between the posteriori probability distribution and the moving target state.  相似文献   

5.
The motion of charged particles in a straight hollow dielectric channel with electrified walls is considered in general form. It is shown that the motion of particles in the channel is periodic. In the first approximation, the potential of interaction of particles with the channel walls is harmonic. The relation between the period of oscillations of a particle in the channel and the physical parameters of the channel wall is derived. In a curvilinear channel (e.g., a ring), the resultant potential acquires a new term due to the centrifugal force. The particle in this case performs multiple contactless motion in the ring. At the same time, oscillations of particles in the ring take place. The motion in the ring is accompanied with emission of synchrotron and channeled radiation. If a thin (micrometer) target is introduced into the ring, high-intensity X rays and bremsstrahlung are observed. The directionality of radiation depends on the particle energy.  相似文献   

6.
《Surface science》1988,197(3):L237-L245
A new technique, employing Green's function methods and the Hellmann-Feynman theorem, makes it possible to perform realistic simulations of atomic motion in covalently-bonded systems. For atoms of various chemical species incident on the (110) surfaces of GaAs and InP, many interesting phenomena have been observed. These include (1) up to 6 distinct initial chemisorption sites for a single species, (2) indiffusion of small atoms (B, C, and N) via process that involves correlated motion of the substrate atoms, and (3) highly anharmonic vibrations for some bonding sites.  相似文献   

7.
Some years ago Papapetrou and Corinaldesi applied Papapetrou's equation's of motion of spinning particles to the case of motion in the Schwarzschild field. For the particular case of motion in the equatorial plane they found an extra integral of motion (in addition to the constants of energy and total angular momentum). We here give a group-theoretical interpretation to the origin of this constant by relating it to the Wigner-Lubanski constant known from the theory of representations of the Poincaré group.Work supported by the Israel National Academy of Sciences, Grant No. 197 (B)P.  相似文献   

8.
To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at. %) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.  相似文献   

9.
Ion beam sputter deposition (IBSD) is an established physical vapour deposition technique that offers the opportunity to tailor the properties of film-forming particles and, consequently, film properties. This is because of two reasons: (i) ion generation and acceleration (ion source), sputtering (target) and film deposition (substrate) are locally separated. (ii) The angular and energy distribution of sputtered target atoms and scattered primary particles depend on ion incidence angle, ion energy, and ion species. Ion beam sputtering of a Si target in a reactive oxygen atmosphere was used to grow SiO2 films on silicon substrates. The sputtering geometry, ion energy and ion species were varied systematically and their influence on film properties was investigated. The SiO2 films are amorphous. The growth rate increases with increasing ion energy and ion incidence angle. Thickness, index of refraction, stoichiometry, mass density and surface roughness show a strong correlation with the sputtering geometry. A considerable amount of primary inert gas particles is found in the deposited films. The primary ion species also has an impact on the film properties, whereas the influence of the ion energy is rather small.  相似文献   

10.
Self-propelled motion of a chemically powered nanodimer is discussed. The nanodimer comprises two linked spheres, one of which has equal interactions with A and B solvent species but catalyzes the reaction A-->B. The other sphere is not chemically active but interacts differently with the two species. The nonequilibrium concentration gradient generated at the catalytic end, in conjunction with the force difference at the noncatalytic end, leads to directed motion. The model mimics features of experimentally studied synthetic nanorod motion. Particle-based simulations and analytical estimates of the velocity provide insight into the nature of nanomotor directed motion.  相似文献   

11.
This paper presents a combustion model of a nano-aluminum-air (nAl-air) suspension. The special feature of the model is performing a local mathematical model of the oxidant diffusion through an aluminum oxide layer on the particle surface taking into account the aluminum-oxidant reaction to simulate the combustion of nano-size aluminum (nAl) particles. The oxidation rate of the aluminum particles and the associated with this process the rate of heat release are determined from the solution of the local combustion problems for the entire set of nAl particles in the suspension. To obtain the suspension state parameters we solve the equation system, which includes the energy conservation equations for the gas and particles, the mass-conservation equation for the gas-dispersed mixture and the motion equations for the gas and particles controlling for the particle velocity lag. The model considers gas expansion and thus gas and particle motion. The developed model does not require setting the ignition temperature of nAl particles. The study provides the calculated propagation rate of the combustion front in the nAl-air suspension depending on the nAl mass concentration and on the initial temperature of the suspension.  相似文献   

12.
水下多目标方位的联合检测与跟踪   总被引:1,自引:1,他引:0       下载免费PDF全文
金盛龙  李宇  黄海宁 《声学学报》2019,44(4):503-512
针对水下多目标方位跟踪及航迹关联问题,提出了一种粒子滤波的联合检测与跟踪方法.该方法在状态滤波过程中不需要方位观测值的输入,直接根据波束能量评估粒子的似然函数;利用交叉和变异算子进化小权值样本,通过低差异性序列的重采样提高子代粒子多样性。实现了多目标的跟踪并避免了方位观测量与多目标航迹关联的问题。仿真结果表明,在航迹断续和航迹交叉的情况下,该方法能够连续准确地跟踪目标方位。利用水下无人平台舷侧线阵的试验数据对算法性能进行了验证,正横方向的跟踪误差在3°以内;在目标运动模型失配时仍可以收敛到正确的方位航迹,没有出现错跟与失跟现象,可提高对交叉、汇聚及分离的多目标方位航迹的连续检测与跟踪能力.   相似文献   

13.
We propose a scheme for producing directed motion in a lattice system by applying a periodic driving potential. By controlling the dynamics by means of the effect known as coherent destruction of tunneling, we demonstrate a novel ratchetlike effect that enables particles to be coherently manipulated and steered without requiring local control. Entanglement between particles can also be controllably generated, which points to the attractive possibility of using this technique for quantum information processing.  相似文献   

14.
15.
The dynamics of the expansion of the plasma plume induced by laser ablation of a copper target at a fluence of 17 J/cm2 was investigated theoretically by means of a Monte Carlo simulation. When the expansion occurs under a relatively high pressure, the ambient gas particles may be involved in the collective motion of the plume. The simulation allows the study of the simultaneous collective motion of different species, such as the laser-ablated and the ambient gas particles. The influence of the background gas nature and pressure on the laser-induced plasma plume expansion behavior was studied. The expansion dynamics were found to be different in the case of the expansion in ambient gases of different molecular weight. The dynamics of the plume expansion under an argon pressure of 200 Pa seem to be strongly related to the equilibration of the pressure gradients in the gas phase, and evidence of the oscillatory behavior of the plume expansion was shown from the evolution over time of the pressure profiles in the plume. This behavior has also been observed in similar conditions for a krypton atmosphere, but for a lower pressure than for argon. The vortical flow formation at the plume periphery, involving both the laser-ablated and the argon particles at moderate pressure, was also predicted from the Monte Carlo simulation.  相似文献   

16.
Methods recently proposed for generating unipolar pulses in nonlinear media in terahertz and optical electromagnetic ranges are reviewed. Such pulses have nonzero “electric area” (time integral of the field strength over the entire duration of a pulse) and, correspondingly, a significant component of the field with zero frequency, thus exhibiting quasistatic properties. Effective generation of unipolar pulses would allow, e.g., transferring mechanical momentum to charged particles and, thereby, controlling the motion of wave packets of matter, which can be useful for compact accelerators of charged particles and for other applications.  相似文献   

17.
The possibility of controlling the motion of microparticles by means of external electromagnetic fields (nonresonance laser radiation, in particular) that induce potential wells for such particles, which are characterized by fixed spatial distribution but deepen over time to a certain level, are analyzed. It is assumed that the particles are located in high vacuum and are affected by nondissipative external forces. Slowing down of relatively fast particles when they pass through the discussed potential wells is shown. Such slowing down of particles is demonstrated using a nonresonance laser beam with intensity increasing over time as an example. Specific features of particle dynamics in the electromagnetic fields under consideration in the case of a one-dimensional rectangular potential well are studied in detail based on simple analytical relations derived from the fundamental equations of classical mechanics. The methods of particle cooling and localization demonstrated in the present work can substantially increase spectroscopy resolution of various microparticles, including, under certain conditions, atoms and molecules.  相似文献   

18.
19.
F Caccavale 《Pramana》1998,50(6):653-668
A review of the state-of the-art of the research in the field of chemical interactions in silica and silicate glasses implanted with metal ions (e.g., Si, Ti, W, Ag, Cu, Cr) and N is presented in terms of new compounds formation. Moreover, under certain circumstances, the formation of nanometer-radius metal colloidal particles in a thin surface layer is observed. The chemical state of the implanted atoms is determined by X-ray photoelectron (XPS) and X-ray excited Auger-electron spectroscopies (XE-AES). Rutherford backscattering spectrometry (RBS) and secondary-ion mass spectrometry (SIMS) are used to determine the in-depth elemental distributions. Optical absorption measurements and transmission electron microscopy (TEM) are used to detect the presence of metallic clusters, as well as to determine their mean size and size distribution. A thermodynamics approach is used to explain the interaction between the implanted ion and the separate atomic species of the target glass and/or between the implanted ion and the target molecular species.  相似文献   

20.
A mathematical model is proposed for the heat-and-mass transfer in a target irradiated by an intense charged particle beam. It includes mechanics of continua equations and a kinetic equation for fast particles that are closed by a wide-range equation of state. A method for solving the model equations, which is based on the division of motion into vortex and potential flows, is proposed, and a numerical experiment is performed. Thermocapillary convection is shown to be the main mechanism of liquid-phase mixing in the target. Convective mixing is found to be effected when the pulse duration is much shorter than the characteristic thermal diffusivity time. Thermocapillary convection is shown to provide mixing on scales of 1–20 μm depending on the irradiation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号