首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss the zero field superconducting phase transition in a finite system of magnetically coupled superconducting layers. Transverse screening is modified by the presence of other layers resulting in topological excitations with fractional flux. Vortex stacks trapping a full flux and present at any finite temperature undergo a dissociation transition which corresponds to the depairing of fractional-flux vortices in individual layers. We propose an experiment with a bilayer system allowing us to identify the dissociation of bound vortex molecules.  相似文献   

2.
We have designed and investigated a contactless magnetic phase shifter for flux-based superconducting qubits. The phase shifter is realized by placing a perpendicularly magnetized dot at the center of a superconducting loop. The flux generated by this magnetic dot gives rise to an additional shielding current in the loop and induces a phase shift. By modifying the parameters of the dot an arbitrary phase shift can be generated in the loop. This magnetic phase shifter can, therefore, be used as an external current source in superconducting circuits, as well as a suitable tool to study fractional Josephson vortices.  相似文献   

3.
Using an extended Nambu-Jona-Lasinio model as a low-energy effective model of QCD, we show that the vacuum in a strong external magnetic field (stronger than 10(16) T) experiences a spontaneous phase transition to an electromagnetically superconducting state. The unexpected superconductivity of, basically, empty space is induced by emergence of quark-antiquark vector condensates with quantum numbers of electrically charged rho mesons. The superconducting phase possesses an anisotropic inhomogeneous structure similar to a periodic Abrikosov lattice in a type-II superconductor. The superconducting vacuum is made of a new type of vortices which are topological defects in the charged vector condensates. The superconductivity is realized along the axis of the magnetic field only. We argue that this effect is absent in pure QED.  相似文献   

4.
Merged, or giant, multiquanta vortices (GVs) are known to appear in very small superconductors near the superconducting transition due to strong confinement of magnetic flux. Here we present evidence for a new, pinning-related, mechanism for vortex merger. Using Bitter decoration to visualize vortices in small Nb disks with varying degrees of disorder, we show that confinement in combination with strong disorder causes individual vortices to merge into clusters or even GVs well below Tc and Hc2, in contrast to well-defined shells of individual vortices found in the absence of pinning.  相似文献   

5.
Abstract

The phenomenological theory of superconductors with a many-component order parameter (OP) is developed. On the basis of a generalized Ginzburg-Landau functional, equations for a two-component-OP superconductor are derived. It is shown that such a superconductor is specified by three length dimensionality parameters—penetration depth λ, correlation length ζ, and width d of the boundary between two superconducting-phase domains. With λ ? d ? ζ, the equations for the OP of a superconductor in a magnetic field can be explored analytically. The transition from the superconducting to the mixed phase may occur not only by the formation of ordinary Abrikosov vortices, but also owing to vortices that have two cores, each transferring a half-integral flux quantum. The total flux transferred by a vortex certainly constitutes an integral quantum. The cores of such a dimer are interconnected by two domain walls, which exercise confinement within the dimer. The distance between the cores in the dimer is of the order of d. Within a domain wall that separates two superconducting-phase domains, a dimer may fall apart into two vortices with a half-integral flux quantum.

For many-component-OP superconductors in a magnetic field, vortex structures of a more complicated nature than a dimer may occur. An individual core may transfer a fractional flux quantum, but the structure as a whole transfers an integral flux quantum. Confinement of individual cores occurs owing to a complicated system of domain walls determined by the topological charges of these vortices.

Under certain conditions, on attaining field H c1, vortices may arise first in the domain walls, carrying a fractional flux quantum, and then within the superconducting domains.  相似文献   

6.
We study staggered flux fluctuations around the superconducting state of the SU(2) mean-field theory for the two-dimensional t-J model and their effect on the electron spectral function. The quasiparticle peaks near (pi,0),(0,pi) get strongly broadened and partially wiped out by these fluctuations while the quasiparticle peaks near the nodes of the d-wave gap are preserved over a wide parameter range. The strength of these effects is governed by an energy scale that decreases towards zero for doping x-->0 and that is related to the energy splitting between the SU(2)-related superconducting and staggered flux mean-field states.  相似文献   

7.
We show that for a thin superconducting strip placed in a transverse dc magnetic field--the typical geometry of experiments with high-T(c) superconductors--the application of a weak ac magnetic field perpendicular to the dc field generates a dc voltage in the strip. This voltage leads to the decay of the critical currents circulating in the strip, and eventually the equilibrium state of the superconductor is established. This relaxation is not due to thermally activated flux creep but to the "walking" motion of vortices in the two-dimensional critical state of the strip with in-plane ac field. Our theory explains the shaking effect that was used for detecting phase transitions of the vortex lattice in superconductors.  相似文献   

8.
以B4C和Mg为原料合成的MgB2-B4C复相超导体具有高的临界电流密度(Jc)和高的超导转变温度(Tc),是一种有潜力的实用MgB2超导材料,其成相机理对复相MgB2超导体的相含量调控和磁通钉扎研究具有重要意义。结合经典烧结理论,研究了B4C-Mg真空固相烧结制备MgB2-B4C复相超导体的超导相形成和晶粒生长过程,给出了B4C-Mg的金斯特林格扩散模型和MgB2晶粒生长过程。通过选择B4C原料粒径,MgB2-B4C复相超导体超导相体积相含量在18%-88%范围可控。相含量88%的MgB2-B4C复相超导体临界转变温度达33.5K,转变宽度1.5K。10 K环境6T外场下电流密度可以达到1×104A/cm2,表明MgB2-B4C复相超导体具有良好的磁通钉扎行为。  相似文献   

9.
We present magnetic field dependence of phase transition temperature and vortex configuration of superconducting networks based on theoretical study. The applied magnetic field is called “filling field” that is defined by applied magnetic flux (in unit of the flux quantum) per unit loop of the superconducting network. If a superconducting network is composed of very thin wires whose thicknesses are less than coherence length, the de Gennes–Alexander (dGA) theory is applicable. We have already shown that field dependences of transition temperature curves have symmetric behavior about the filling field of 1/2 by solving the dGA equation numerically in square lattices, honeycomb lattices, cubic lattices and those with randomly lack of wires networks. Many experimental studies also show the symmetric behavior. In this paper, we make an explicit theoretical explanation of symmetric behaviors of superconducting network respect to the applied field.  相似文献   

10.
A percolation transition in the vortex state of a superconducting 2H-NbSe2 crystal is observed in the regime where vortices form a heterogeneous phase consisting of ordered and disordered domains. The transition is signaled by a sharp increase in critical current that occurs when the volume fraction of disordered domains reaches the value P(c) = 0.26 +/- 0.04. Measurements on different vortex states show that, while the temperature of the transition depends on history and measurement speed, the value of P(c) and the critical exponent characterizing the approach to it, r = 1.97 +/- 0.66, are universal.  相似文献   

11.
To investigate the damage profiles of high-fluence low-energy proton irradiation on superconducting materials and related devices, Raman characterization and electrical transport measurement of 40-keV-proton irradiated YBa_2Cu_3O_(7-x)(YBCO) thin films are carried out. From micro-Raman spectroscopy and x-ray diffraction studies, the main component of proton-radiation-induced defects is found to be the partial transition of superconducting orthorhombic phase to the semiconducting tetragonal phase and non-superconducting secondary phase. The results indicate that the defects induced in the conducting CuO_2 planes, such as increased oxygen vacancies and interstitials, can result in an increase in the resistivity but a decrease in the transition temperature TCwith the increase in the fluence of proton irradiation, which is confirmed in the electrical transport measurements. Especially, zero-resistance temperature TC_0 is not observed at a fluence of 10~(15)p/cm~2.Furthermore, the variation of activation energy U_0 can be explained by the plastic-flux creep theory, which indicates that the plastic deformation and entanglement of vortices in a weakly pinned vortex liquid are caused by disorders of point-like defects. Point-like disorders are demonstrated to be the main contribution to the low-energy proton radiation damage in YBCO thin films. These disorders are likely to cause flux creep by thermally assisted flux flow, which may increase noise and reduce the precision of superconducting devices.  相似文献   

12.
We show that many observable properties of high-temperature superconductors can be obtained in the framework of a one-dimensional self-consistent model with included superconducting correlations. Analytical solutions for spin, charge, and superconductivity order parameters are found. The ground state of the model at low hole doping is a spin-charge solitonic superstructure. Increased doping leads to a transition to the superconducting phase. There is a region of doping where superconductivity, spin density wave, and charged stripe structure coexist. The charge density modulation appears in the vicinity of vortices (kinks in the 1D model) in the superconducting state.  相似文献   

13.
为玻色Hofstadter梯子模型引入交错跃迁,来扩展模型支持的量子流相.基于精确对角化和密度矩阵重整化群计算发现,无相互作用时,系统中包含横流相、涡旋相和纵流相;横流相来自均匀跃迁时Hofstadter梯子模型的Meissner相,纵流相是交错跃迁时才可见的流相.强相互作用极限下系统的超流区也包含横流相、纵流相和涡旋相,但存在更多的相变级数;超流区的横流相、纵流相之间存在相变但Mott区的不存在,把Mott区的"横、纵流相"称为Mott-均匀相,在Mott区只存在均匀相和涡旋相.跃迁的交错会压缩涡旋相存在的区域,使Mott区最终只剩下均匀相;跃迁的交错不仅能驱动Mott-超流相变,还使磁通的改变也能够驱动系统的Mott-超流相变.对这一系统的研究丰富了磁通系统中的量子流相,同时为研究拓扑流特性提供了模型支持.  相似文献   

14.
We report scanning tunneling spectroscopy imaging of the vortex lattice in single crystalline MgB2. By tunneling parallel to the c axis, a single superconducting gap (Delta=2.2 meV) associated with the pi band is observed. The vortices in the pi band have a large core size compared to estimates based on H(c2) and show an absence of localized states in the core. Furthermore, superconductivity between the vortices is rapidly suppressed by an applied field. These results suggest that superconductivity in the pi band is, at least partially, induced by the intrinsically superconducting sigma band.  相似文献   

15.
应用二维约瑟夫逊弱连接网络模型 ,讨论了磁场引起的二维超导体系中磁通“涡旋反涡旋”束缚对的激发问题 ,给出了自由涡旋分布 n( T,H )的分析表达式 ,对比 YBCO颗粒膜样品的非平衡微波响应测量数据发现 :两者具有相似的分布特征。该结果表明 ,高温超导颗粒膜的非平衡微波响应机制与磁通“涡旋反涡旋”束缚对的激发态可能存在某种内在联系。  相似文献   

16.
The Hall effect in the mixed state of high-Tc superconductors (HTSC) is of an anomalous nature: near the transition there is a range of temperatures and of magnetic fields where the sign of the Hall effect is opposite to that in the normal state. The universality of the phenomenon in question is indicative of its connection with some general properties of the mixed state of type-II superconductors, namely, with peculiarities of motion of magnetic flux vortex lines (vortices) in these superconductors. This work puts forward a model accounting for a number of vortex motion specific features and providing a possibility to obtain the characteristics of the anomalous Hall effect.

The work is based on the phenomenologically generalized results of Bardeen-Stephen and Nozieres-Vinen, supplemented with an allowance for a new mechanism of vortex “friction” associated with Andreev electron reflection on the interface between the normal core and the superconducting periphery of a vortex. Within the framework of the model suggested, magnetic field (and temperature) dependences of the longitudinal and Hall resistances of a mixed state superconductor have been calculated at temperatures nearing Tc. At certain quite realistic parameters which define the forces acting on the vortices, there is a range of magnetic fields and temperatures where the sign of the Hall effect is opposite to that in the normal state. The lower limit of this range is the irreversibility line and the upper critical field.  相似文献   


17.
We show that periodically driven superconducting vortices in the presence of quenched disorder exhibit a transition from reversible to irreversible flow under increasing vortex density or cycle period. This type of behavior has recently been observed for periodically sheared colloidal suspensions and we demonstrate that driven vortex systems exhibit remarkably similar behavior. We also provide evidence that the onset of irreversible behavior is a dynamical phase transition.  相似文献   

18.
We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective staggered magnetic field. In addition to the known uniform superfluid and Mott insulating phases, the zero-temperature phase diagram exhibits a novel kind of finite-momentum superfluid phase, characterized by a quantized staggered rotational flux. An extension for fermionic atoms leads to an anisotropic Dirac spectrum, which is relevant to graphene and high-T(c) superconductors.  相似文献   

19.
The superconducting instabilities of the doped repulsive 2D Hubbard model are studied in the intermediate to strong coupling regime with the help of the dynamical cluster approximation. To solve the effective cluster problem we employ an extended noncrossing approximation, which allows for a transition to the broken symmetry state. At sufficiently low temperatures we find stable d-wave solutions with off-diagonal long-range order. The maximal T(c) approximately 150 K occurs for a doping delta approximately 20% and the doping dependence of the transition temperatures agrees well with the generic high- T(c) phase diagram.  相似文献   

20.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号