首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider theoretically the exchange coupling for independent heavy excitons in both weakly and strongly confining quantum wires. We discuss different contributions for the spin depolarization in the presence of spin-conserving scatterings and show that localization effects weaken the spin depolarization rate.  相似文献   

2.
We report a very large enhancement of the thermopower of 4 nm diameter metallic Zn nanowires, with a temperature dependence that is consistent with that of their electrical resistivity and the Mott formula. The temperature dependence of the resistance, magnetoresistance, and thermopower of composites consisting of 15, 9, and 4 nm diameter Zn nanowires imbedded in porous host materials is reported. The 15 nm wires are metallic. The smaller wires show 1D weak localization, but the electrical resistivity mostly follows a T(-1/2) law, and the thermopower of the 4 nm wires saturates at -130 microV/K.  相似文献   

3.
We study Anderson localization in quasi-one-dimensional disordered wires within the framework of the replica sigma model. Applying a semiclassical approach (geodesic action plus Gaussian fluctuations) recently introduced within the context of supersymmetry by Lamacraft, Simons, and Zirnbauer, we compute the exact density of transmission matrix eigenvalues of superconducting wires (of symmetry class CI.) For the unitary class of metallic systems (class A) we are able to obtain the density function, save for its large transmission tail.  相似文献   

4.
We study exciton and biexciton spectra in disordered semiconductor quantum wires by means of nanophotoluminescence spectroscopy. We demonstrate a close link between the exciton localization length along the wire and the occurrence of a biexciton spectral line. The biexciton signature appears only if the corresponding exciton state extends over more than a few tens of nanometers. We also measure a nonmonotonous variation of the biexciton binding energy with decreasing exciton localization length. This behavior is quantitatively well reproduced by the solution of the single-band Schr?dinger equation of the four-particle problem in a one-dimensional confining potential.  相似文献   

5.
We study a quantum network extending in one dimension (chain of square loops connected at one vertex) made up of quantum wires with Rashba spin-orbit coupling. We show that the Rashba effect may give rise to an electron localization phenomenon similar to the one induced by magnetic field. This localization effect can be attributed to the spin precession due to the Rashba effect. We present results both for the spectral properties of the infinite chain and for linear transport through a finite-size chain connected to leads. Furthermore, we study the effect of disorder on the transport properties of this network.  相似文献   

6.
We present a finite difference calculation of the binding energies of localized trions in quasi-one-dimensional quantum wires (QWRs). It is found that both the lateral confinement and the localization potential have a strong effect on the relative stability of the trions. It is confirmed that a weak localization potential not only enhances the binding energy but also changes the relative stability of the positive and negative trions. Our theoretical model is in good accord with a recent experiment regarding photoluminescence in disordered QWRs.  相似文献   

7.
We present magnetic field dependence of phase transition temperature and vortex configuration of superconducting networks based on theoretical study. The applied magnetic field is called “filling field” that is defined by applied magnetic flux (in unit of the flux quantum) per unit loop of the superconducting network. If a superconducting network is composed of very thin wires whose thicknesses are less than coherence length, the de Gennes–Alexander (dGA) theory is applicable. We have already shown that field dependences of transition temperature curves have symmetric behavior about the filling field of 1/2 by solving the dGA equation numerically in square lattices, honeycomb lattices, cubic lattices and those with randomly lack of wires networks. Many experimental studies also show the symmetric behavior. In this paper, we make an explicit theoretical explanation of symmetric behaviors of superconducting network respect to the applied field.  相似文献   

8.
9.
10.
祝红军  熊诗杰 《中国物理 B》2010,19(3):37107-037107
We investigate several models of a one-dimensional chain coupling with surrounding atoms to elucidate disorder-induced delocalization in quantum wires, a peculiar behaviour against common wisdom. We show that the localization length is enhanced by disorder of side sites in the case of strong disorder, but in the case of weak disorder there is a plateau in this dependence. The above behaviour is the conjunct influence of the coupling to the surrounding atoms and the antiresonant effect. We also discuss different effects and their physical origin of different types of disorder in such systems. The numerical results show that coupling with the surrounding atoms can induce either the localization or delocalization effect depending on the values of parameters.  相似文献   

11.
We study weakly disordered quantum wires whose width is large compared to the Fermi wavelength. It is conjectured that such wires display universal metallic behavior as long as their length is shorter than the localization length (which increases with the width). The random matrix theory that accounts for this behavior—the DMPK theory—rests on assumptions that are in general not satisfied by realistic microscopic models. Starting from the Anderson model on a strip, we show that a twofold scaling limit nevertheless allows to recover rigorously the fundaments of DMPK theory, thus opening a way to settle some conjectures on universal metallic behavior.  相似文献   

12.
提出应用人工神经网络对互连导线间串扰问题进行预测的方法.选择对互连导线串扰响应有影响的相关参数作为输入预测因子,用基于误差反向传播的BP网络构造输入预测因子与串扰响应输出之间的映射关系,并用MTL和FDTD法计算获得的训练样本集对构造好的BP网络进行训练,建立基于BP网络的导线串扰的预测模型.最后,将串扰的BP预测结果和和测试样本进行比较,表明该方法有效.  相似文献   

13.
We consider the properties of vibrational dynamics on random networks, with random masses and spring constants. The localization properties of the eigenstates contrast greatly with the Laplacian case on these networks. We introduce several real-space renormalization techniques which can be used to describe this dynamics on general networks, drawing on strong disorder techniques developed for regular lattices. The renormalization group is capable of elucidating the localization properties, and provides, even for specific network instances, a fast approximation technique for determining the spectra which compares well with exact results.  相似文献   

14.
We investigate the instability of one-dimensional dangling-bond (DB) wires fabricated on the H-terminated C(001), Si(001), and Ge(001) surfaces by using density-functional theory calculations. The three DB wires are found to show drastically different couplings between charge, spin, and lattice degrees of freedom, resulting in an insulating ground state. The C DB wire has an antiferromagnetic spin coupling between unpaired DB electrons, caused by strong electron–electron interactions, whereas the Ge DB wire has a strong charge-lattice coupling, yielding a Peierls-like lattice distortion. For the Si DB wire, the antiferromagnetic spin ordering and the Peierls instability are highly competing with each other. The physical origin of such disparate features in the three DB wires can be traced to the different degree of localization of 2p, 3p, and 4p DB orbitals.  相似文献   

15.
The low-temperature transport properties of titanium nitride wires with the width comparable with or much larger than the superconducting coherence length are studied experimentally. It is shown that the reduction of the width of wires does not affect the transport properties at the temperatures above the superconducting transition temperature and electron transport in this temperature range is determined by quantum contributions to the conductivity from weak localization and electron–electron interaction. It is established that the reduction of the width of wires does not change the superconducting transition temperature but completely suppresses the topological Berezinskii–Kosterlitz–Thouless transition. It is found that the threshold magnetic field increases with a decrease in the width of wires.  相似文献   

16.
It is shown that strong inelastic processes are not necessary for suppression of localization effects in disordered conductors. The influence of an external high frequency electric field on quantum corrections to conductivity is considered. Relatively weak fields are found to suppress localization. Thermal electromagnetic fluctuations act in the same way. These fluctuations lead to new dependences of localization effects in films and wires on temperature, impurity concentration and transversal size of the sample.  相似文献   

17.
We have measured photoluminescence excitation (PLE) spectra and radiative lifetimes as functions of temperature for serpentine superlattice quantum-wire arrays. The (Al, Ga)As arrays have lateral periods near 10 nm, and lateral confining potentials of 120 meV in the conduction band. At low temperature the excitons are strongly localized within potential fluctuations along the wires. The radiative lifetime of these localized states is 340 ps at 2 K. The degree of exciton localization decreases with increasing temperature, from which we estimate the strongly-localizing potential fluctuations to be approximately 10 meV deep. Above 80 K the excitons have sufficient thermal energy for motion along the wires. The radiative lifetimes increase with temperature, to 20 ns for free carriers at 325 K. The lateral potential barriers inhibit diffusion to non-radiative recombination sites.  相似文献   

18.
Magnetotransport properties of quasi-one-dimensional (quasi-1D) quantum wires based on InGaAs/InP heterojunctions were studied. The influence of the wire width as well as of the temperature on the weak antilocalization was investigated. A crossover from the weak antilocalization to the weak localization regime was observed in the very narrow wires. The analysis of the characteristic scattering lengths suggests a strong effect of the electron confinement and diffusive boundary scattering on the suppression of the weak antilocalization.  相似文献   

19.
Sharp localization transitions of chiral edge states in disordered quantum wires subject to a strong magnetic field are shown to be driven by crossovers from two-to one-dimensional localization of bulk states. As a result, the two-terminal conductance is found to exhibit discontinuous transitions at zero temperature between exactly integer plateau values and zero, reminiscent of first-order phase transitions. We discuss the corresponding phase diagram. The spin of the electrons is shown to result in a multitude of phases when the spin degeneracy is raised by the Zeeman energy. The width of conductance plateaus is found to depend sensitively on the spin flip rate 1/τs.  相似文献   

20.

The spectral properties of the adjacency matrix, in particular its largest eigenvalue and the associated principal eigenvector, dominate many structural and dynamical properties of complex networks. Here we focus on the localization properties of the principal eigenvector in real networks. We show that in most cases it is either localized on the star defined by the node with largest degree (hub) and its nearest neighbors, or on the densely connected subgraph defined by the maximum K-core in a K-core decomposition. The localization of the principal eigenvector is often strongly correlated with the value of the largest eigenvalue, which is given by the local eigenvalue of the corresponding localization subgraph, but different scenarios sometimes occur. We additionally show that simple targeted immunization strategies for epidemic spreading are extremely sensitive to the actual localization set.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号