首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent significant improvements of the contrast ratio of chirped pulse amplified pulses allows us to extend the applicability domain of laser accelerated protons to very thin targets. In this framework, we propose an analytical model particularly suitable to reproducing ion laser acceleration experiments using high intensity and ultrahigh contrast pulses. The model is based on a self-consistent solution of the Poisson equation using an adiabatic approximation for laser generated fast electrons which allows one to find the target thickness maximizing the maximum proton (and ion) energies and population as a function of the laser parameters. Model furnished values show a good agreement with experimental data and 2D particle-in-cell simulation results.  相似文献   

3.
Absorption measurements on solid conducting targets have been performed in s and p polarization with ultrashort, high-contrast Ti:sapphire laser pulses at intensities up to 5x10{16}W/cm{2} and pulse duration of 8 fs. The particular relevance of the reported absorption measurements lies in the fact that the extremely short laser pulse interacts with matter close to solid density during the entire pulse duration. A pronounced increase of absorption for p polarization at increasing angles is observed reaching 77% for an incidence angle of 80 degrees . Simulations performed using a 2D particle in cell code show a very good agreement with the experimental data for a plasma profile of L/lambda approximately 0.01.  相似文献   

4.
Mechanism of terahertz (THz) pulse generation in gases irradiated by ultrashort laser pulses is investigated theoretically. Quasi-static transverse currents produced by laser field ionization of gases and the longitudinal modulation in formed plasmas are responsible for the THz emission at the electron plasma frequency, as demonstrated by particle-in-cell simulations including field ionization. The THz field amplitude scaling with the laser amplitude within a large range is also discussed.  相似文献   

5.
Mechanism of terahertz (THz) pulse generation in gases irradiated by ultrashort laser pulses is investigated theoretically. Quasi-static transverse currents produced by laser field ionization of gases and the longitudinal modulation in formed plasmas are responsible for the THz emission at the electron plasma frequency, as demonstrated by particle-in-cell simulations including field ionization. The THz field amplitude scaling with the laser amplitude within a large range is also discussed.  相似文献   

6.
7.
Ion acceleration from the front and rear sides of a foil target is observed by measurements of the ions’ spectral and spatial emission characteristics when irradiating the targets with ultrashort (40-fs) high-intensity laser pulses. The experimental results show that the origin of accelerated ions, from both the front and rear surfaces of the target, strongly depend on the laser energy absorption mechanism. In particular, laser pulse parameters such as pulse duration and contrast are crucial and determine the entire acceleration scenario. Thus, the experimental outcome can be controlled by selection of the irradiation conditions. The text was submitted by the authors in English.  相似文献   

8.
Experimental results are presented for proton acceleration from the back of a target irradiated by laser pulses with intensities up to 2 × 1019 W/cm2 generated by the SOKOL-P facility. The proton acceleration efficiency increases with decreasing of the target thickness. However, thin targets are destroyed by the amplified spontaneous emission (ASE) prepulse before the main pulse arrival. An additional optical switch based on a Pockels cell has been used in the amplification section to carry out the experiments with ultrathin foils. As a result, the energy contrast with respect to the ASE prepulse has been increased up to 4 × 106. Owing to high contrast, the experiments on studying proton acceleration from foils with thicknesses less than 100 nm have been carried out.  相似文献   

9.
We report on measurements of source sizes and charge state distributions of ions accelerated from thin foils irradiated by ultrashort (100–300 fs) high-intensity (1-6×1019 W/cm2) laser pulses. The source sizes of proton and carbon ion beams originating from hydrocarbon contaminants on the surfaces of 5 m thick aluminum foils were investigated using the knife-edge method. For low-energy protons and low-carbon charge states, the source area was found to exceed the focal spot area by a factor of 104. For the determination of charge state distributions, sandwich targets consisting of a 25 m thick tungsten layer, a 2-nm thin beryllium layer, and again a tungsten layer whose thickness was varied were used. These targets were resistively heated to remove the light surface contaminants. Peaked energy spectra of oxygen and argon ions corresponding to the equilibrium distribution after propagation through matter were observed. PACS 41.75.Jv; 52.38.Kd; 52.25.Jm; 52.50.Jm; 52.70.Nc; 41.75.Ak  相似文献   

10.
We perform a theoretical investigation on the control over the atomic excitation of Rydberg states with shaped intense ultrashort laser pulses. By numerically solving the time-dependent Schr?dinger equation(TDSE), we systematically study the dependence of the population of the Rydberg states on the π phase step position in the frequency spectra of the laser pulse for different intensities, central wavelengths and pulse durations. Our results show that the Rydberg excitation process can be effectively modulated using shaped intense laser pulses with the laser intensity as high as 1 × 10~(14) W/cm~2. Our work also have benefit to the future investigation to find out the dominant mechanism behind the excitation of Rydberg states in strong laser fields.  相似文献   

11.
Ultrashort laser pulses are used to ablate a thin molybdenum layer from glass by irradiating the metal film through the transparent substrate. The trajectories of ablated molybdenum fragments are recorded using a shadowgraphic setup with a time resolution in the nanosecond range. In addition, the shape of collected molybdenum fragments is examined as a function of applied fluence. It is confirmed that in a fluence regime close to the ablation threshold one single disc is ablated as a whole and its velocity is determined in the order of 50 ms?1. In a second fluence regime, partial melting at the center of the disc is found and small melt droplets are recorded on their flight. Mo fragments ablated in this regime feature a ring-like structure with a brittle fracture at the outer and a molten appearance at the inner edge.  相似文献   

12.
13.
X-ray spectra from nitrogen clusters irradiated with ultrashort laser pulses are reported. The line spectra of H-like and He-like nitrogen ions have been observed by irradiation with 100 fs, 800 nm pulses at 7×1017 W/cm2 irradiance. The generation of highly charged ions of N6+ and N7+ is explained by the optical field-induced ionization and the subsequent collisional ionizations in the clusters. The He-δline has anomalously high brightness compared to other He-like lines. It is ascribed to charge exchange, which preferentially populates the n=5 level of N5+. Received: 7 October 1999 / Published online: 23 February 2000  相似文献   

14.
MeV-proton production from solid targets irradiated by 100-fs laser pulses at intensities above 1x10(20) W cm(-2) has been studied as a function of initial target thickness. For foils 100 microm thick the proton beam was characterized by an energy spectrum of temperature 1.4 MeV with a cutoff at 6.5 MeV. When the target thickness was reduced to 3 microm the temperature was 3.2+/-0.3 MeV with a cutoff at 24 MeV. These observations are consistent with modeling showing an enhanced density of MeV electrons at the rear surface for the thinnest targets, which predicts an increased acceleration and higher proton energies.  相似文献   

15.
The comparative efficiency and beam characteristics of high-energy ions generated by high-intensity short-pulse lasers (approximately 1-6 x 10(19) W/cm2) from both the front and rear surfaces of thin metal foils have been measured under identical conditions. Using direct beam measurements and nuclear activation techniques, we find that rear-surface acceleration produces higher energy particles with smaller divergence and a higher efficiency than front-surface acceleration. Our observations are well reproduced by realistic particle-in-cell simulations, and we predict optimal criteria for future applications.  相似文献   

16.
17.
The phase modulation of intense ( I = 10(18) W/cm(2)) ultrashort laser pulses ( tau(p) = 70 fs) after reflection from steep, dense plasmas has been temporally resolved for the first time in particle-in-cell simulations. The position of the turning point from where the pulse reflects has been compared to the phase modulation, over a range of angles of incidence. At normal incidence or s polarization the phase modulation almost exactly represents the movement of the turning point due to the light pressure. As the angle of incidence is increased for p polarization, the simple Fresnel relationship between phase modulation and displacement of the reflection position, Delta phi(t) = -2k(0)Delta x(t)cos theta(0), increasingly breaks down.  相似文献   

18.
We study the angular distribution of relativistic electrons generated through laser-plasma interaction with pulse intensity varying from 10(18) W/cm2 up to 10(21) W/cm2 and plasma density ranging from 10 times up to 160 times critical density with the help of 2D and 3D particle-in-cell simulations. This study gives clear evidence that the divergence of the beam is an intrinsic property of the interaction of a laser pulse with a sharp density gradient. It is entirely due to the excitation of large static magnetic fields in the layer of interaction. The energy deposited in this layer increases drastically the temperature of the plasma independently of the initial temperature. This makes the plasma locally collisionless and the simulation relevant for the current experiments.  相似文献   

19.
Hydrodynamic simulations are used to evaluate the potential of ultrashort laser pulses to localize energy at metallic surfaces, in our case aluminum. The emphasis is put on the dynamic sequence of laser energy deposition steps during the electron-ion nonequilibrium stage and the subsequent matter transformation phases. The simulations indicate correlated optical and thermodynamical states associated to specific electronic collisional mechanisms. The timescales of energy deposition deliver a guideline for using relevant relaxation times to improve the energy coupling into the material. We focus on a class of pump-probe experiments which investigate energy storage and particle emission from solids under ultrafast laser irradiation. Moreover, we have used our model to explain the experimentally observed optimization of energy coupling by tailoring temporal laser intensity envelopes and its subsequent influence on the ablation rate and on the composition of ablation products. Potential control for nanoparticle generation is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号