首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
Current-induced domain-wall motion with velocity spanning over 5 orders of magnitude up to 22 m/s has been observed by the magneto-optical Kerr effect in (Ga,Mn)As with perpendicular magnetic anisotropy. The data are employed to verify theories of spin transfer by the Slonczewski-like mechanism as well as by the torque resulting from spin-flip transitions in the domain-wall region. Evidence for domain-wall creep at low currents is found.  相似文献   

2.
Current-driven domain-wall motion is studied in (Ga,Mn)(As,P) ferromagnetic semiconducting tracks with perpendicular anisotropy. A linear steady state flow regime is observed over a large temperature range of the ferromagnetic phase (0.1T(c)相似文献   

3.
We derive a phenomenological theory of current-induced staggered magnetization dynamics in antiferromagnets. The theory captures the reactive and dissipative current-induced torques and the conventional effects of magnetic fields and damping. A Walker ansatz describes the dc current-induced domain-wall motion when there is no dissipation. If magnetic damping and dissipative torques are included, the Walker ansatz remains robust when the domain wall moves slowly. As in ferromagnets, the domain-wall velocity is proportional to the ratio between the dissipative torque and the magnetization damping. In addition, a current-driven antiferromagnetic domain wall acquires a net magnetic moment.  相似文献   

4.
Time-resolved x-ray microscopy is used to image the influence of alternating high-density currents on the magnetization dynamics of ferromagnetic vortices. Spin-torque-induced vortex gyration is observed in micrometer-sized permalloy squares. The phases of the gyration in structures with different chirality are compared to an analytical model and micromagnetic simulations, considering both alternating spin-polarized currents and the current's Oersted field. In our case the driving force due to spin-transfer torque is about 70% of the total excitation while the remainder originates from the current's Oersted field. This finding has implications to magnetic storage devices using spin-torque driven magnetization switching and domain-wall motion.  相似文献   

5.
The extraordinary dynamic properties of single-crystal iron garnet films with magnetic anisotropy in the plane of the film, specifically unidirectional anisotropy of the domain-wall velocity, are explained on the basis of a mechanism of domain-wall motion that incorporates local rotation of the magnetization vector ahead of the moving domain wall, induced by spin waves radiated from the wall and by anisotropy of the dissipative properties of the single-crystal iron garnet film in its plane. Fiz. Tverd. Tela (St. Petersburg) 39, 1421–1427 (August 1997)  相似文献   

6.
We report on magnetic domain-wall velocity measurements in ultrathin Pt/Co(0.5-0.8 nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examination of the transition between thermally activated creep and viscous flow: motion regimes predicted from general theories for driven elastic interfaces in weakly disordered media. The dissipation limited flow regime is found to be consistent with precessional domain-wall motion, analysis of which yields values for the damping parameter, alpha.  相似文献   

7.
We calculate the spin density, spin currents and spin torque due to a spin polarized current on a magnetic domain wall juxtaposed to or inserted in a conventional superconductor. The superconductor is part of a heterostructure of the type NSN or FSF. In general, the spin torque exerted on the domain wall is weaker with respect to a normal metal. However, there are regimes where the torque is enhanced with respect to the normal metal. In these regimes the motion of the domain wall is therefore more efficient. A notable case is the passing of an unpolarized current which leads to a finite torque in the case of the superconductor.  相似文献   

8.
9.
王日兴  贺鹏斌  肖运昌  李建英 《物理学报》2015,64(13):137201-137201
本文在理论上研究了铁磁/重金属双层薄膜结构中自旋霍尔效应自旋矩驱动的磁动力学. 通过线性稳定性分析, 获得了以电流和磁场为控制参数的磁性状态相图. 发现通过调节电流密度和外磁场, 可以获得不同的磁性状态, 例如: 平面内的进动态、平面内的稳定态以及双稳态. 当外磁场的方向在一定的范围时, 通过调节电流密度可以实现磁矩的翻转和进动. 同时, 通过数值求解微分方程, 给出了这些磁性状态磁矩的演化轨迹.  相似文献   

10.
We analytically determine the spatially varying spin-transfer torque within a domain wall. In the case of ballistic spin and diffusive charge transport, the spin-transfer torque as well as the local degree of nonadiabaticity oscillate within a domain wall. In narrow domain walls, the degree of nonadiabaticity ceases to be a constant material parameter but depends on the domain-wall width including a possible sign change, which is crucial for experiments and the technological utilization in spin-transfer-torque-based storage devices.  相似文献   

11.
We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. Th  相似文献   

12.
The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes.  相似文献   

13.
14.
15.
The motion of magnetic domain walls in permalloy nanowires is investigated by real-time resistance measurements. The domain wall velocity is measured as a function of the magnetic field in the presence of a current flowing through the nanowire. We show that the current can significantly increase or decrease the domain wall velocity, depending on its direction. These results are understood within a one-dimensional model of the domain wall dynamics which includes the spin transfer torque.  相似文献   

16.
In this Letter we construct a spinor transport theory and derive the equations of motion for the distribution functions for currents in noncollinear magnetic multilayers. We find the length scale which characterizes the transverse spin current is of the order of 3 nm for a ferromagnetic 3d transition metal such as Co; this alters one's prediction of the spin torque generated for free magnetic layers less than 3 nm. In the limit of large exchange splitting we reproduce the results previously found for spin currents across noncollinear multilayers inasmuch as there are no transverse spin currents in the layers themselves in this limit.  相似文献   

17.
Based on both the spin diffusion equation and the Landau-LlTshitz-Gilbert (LLG) equation, we demonstrate the influence of out-of-plane spin torque on magnetization switching and susceptibility in a magnetic multilayer system. The variation of spin accumulation and local magnetization with respect to time are studied in the magnetization reversal induced by spin torque. We also research the susceptibility subject to a microwave magnetic field, which is compared with the results obtained without out-of-plane torque.  相似文献   

18.
《Current Applied Physics》2015,15(10):1139-1142
Based on a theoretical study, we show that the interfacial Dzyaloshinskii–Moriya interaction results in very efficient current-induced manipulation of a transverse domain wall in magnetic nanowires. The efficient domain wall motion is caused by combined effects of the domain wall distortion induced by the interfacial Dzyaloshinskii–Moriya interaction and the damping-like spin–orbit spin transfer torque. We find that with reasonable parameters, the domain wall velocity reaches a few hundreds m/s at the current density of 107 A/cm2, which has never been achieved before. Our result will be beneficial for low-power operation of domain wall devices.  相似文献   

19.
Recent data on the bias dependence of the spin transfer effect in magnetic tunnel junctions have shown that torque remains intact at bias voltages for which the tunneling magnetoresistance has been strongly reduced. We show that the current induced excitations due to hot electrons, while reducing the magnetoresistance, enhance both the charge current and the spin transfer in magnetic tunnel junctions in such a manner that the ratio of the torque to the charge current does not significantly change.  相似文献   

20.
We quantitatively determine a perpendicular spin torque in magnetic tunnel junctions by measuring the room-temperature critical switching current at various magnetic fields and current pulse widths. We find that the magnitude of the torque is proportional to the product of the current density and the bias voltage, and the direction of the torque reverses as the polarity of the voltage changes. By taking into account the energy-dependent inelastic scattering of tunnel electrons, we formulate the bias dependence of the perpendicular spin torque which is in qualitative agreement with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号